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Optimal design of weakly curved compressed bars
with Maxwell type creep effects

R. WOJDANOWSKA (KRAKOW)

THE oPTIMAL shape of the clamped and two-hinged bars compressed by axial force,
having an initial deflection line and subjected to creep buckling is determined. A linear
Maxwell type creep is considered and as an optimization criterion the minimum
logarithmic rate of creep is assumed. The exact solution under the restriction to certain
particular initial deflection lines of the bar is obtained. An analogy to elastic solutions
is demonstrated. The optimal dimensionless section F(x) for the cases of buckling
from a convergence plane, buckling in a convergence plane and geometrically similar
sections is presented graphically.

1. Introductory remarks

IN THE caAsE of structures working at elevated temperatures or structures made of materials
exhibiting rheological properties already at room temperature it is required, in optimal
structural design, to take into account the rheological effects. Classification of the optimum
design problems in rheology and some simple exampies of such design are given in
ZyczkowskI’s paper [16].

A certain group of auxiliary conditions of optimal structural design in creep conditions
is connected with creep buckling. Some problems of this type were considered in [12]
and [15] in relation with the Rabotnov-Shesterikov creep buckling theory for a bar being
originally straight. A different approach, based on the Kempner-Hoff’s buckling theory[5, 7]
and an assumption of the small initial curvature of the compressed bars are found in the
paper [11] concerning optimum design of simple lattice structures. A comparison of dif-
ferent creep buckling theories may be found in the review papers of HurT [5], Horr [4]
and Zyczkowski [13].

In this paper we assume the buckling theory of weakly curved bars but we restrict our
considerations to the linear Maxwell type creep. Such a problem for an axially compress-
ed prismatic bar was formulated in 1946 by FREUDENTHAL [2] and RZANICYN [10]. They
confirmed the fact that the growth of deflections with time has an exponential character.
In our paper we deal with the optimization of the shape of such a bar (optimal distribu-
tion of the cross-section along the axis). We are seeking a minimum volume of the bar at
a fixed compressive force and fixed logarithmic creep rate. We restrict our considerations
to the cases when a rate of creep is constant (independent of spatial and time variables)
and therefore the choice of a corresponding norm for the rate of creep is meaningless.
The optimum design problem considered belongs to the variational calculus problems;
we obtain the exact solutions under the assumption of certain particular initial deflection
lines of the bar.
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We show that the problem formulated in close to the optimum design problem of
straight elastic bars, originated by Lagrange and examined in detail by CLAUsEN, Cencov [1]
and Nixorar [8]. KeLLER [6] considered statically indeterminate cases of the bar and sup-
ports. However, as OLHOFF dnd RASMUSEEN [9]° havé pointed out, Kellys’ solution was
erroneous since it did not take into account the different possible forms of the stability
loss and they presented a correct solution based on the so-called “bimodal optimization”.
In our paper we deal with statically determined supports of bars only and in this case the-
refore, the bimodal optimization does not apply.

2. Formulation of the problem

Consider first a creep buckling problem for non-prismatic, two-hinged and clamped
at one end bars of small curvature subjected to the action of axial force. Next we formulate
in detail the problem of optimization. In this problem we use the linear Maxwell type law

o
.1 Sl Dot
2.1 e= 7%
in which &, o, E and 2 denote, respectively, the strain, stress, Young’s modulus and material
constant characterizing the viscous properties of the material. A dot above the variable
denotes differentiation with respect to time.

After introducing dimensionless time T = i;zt, restricting to small deflections and

assuming ¥ = —w'’, M = Pw (P is compressing force), the differential equation for the
deflection line of the bar obeying the linear creep law (2.1), borrowed from [14], assumes
the form

(22) Piv+Pw = —w"EJ.

In Eq. (2.2) M and x denote the bending moment and curvature, respectively, J = J(x)
is the moment of inertia of the cross-section of the bar at a point x, M and % denote de-

rivatives with respect to dimensionless time .
We have the following boundary conditions: for a bar clamped at one end,

(2.3) wl,7)=0, w(@0,7)=0,
and for a two-hinged bar,

2.4) wil,©)=0, w(-L7)=0.
The initial condition assumes the form

(2.5) w(x, 0) = wy(x)

in which the function w, (x) describes the instant (elastic) deflection of the bar.
We confine our study to such solutiong of the partial differential equation (2.2) which
we may obtain, using the method of separation of variables,

(2.6 w(x, 7) = wi(x) wa(7)
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i.e for creep buckling, retaining geometrical similarity of the deflection line in the particular
moments of time. In this way we obtain a relatively simple exact solution: yet, it is restricted
to the certain precisely determined initial deflection lines. After introducing Eq. (2.6)
into Eq. (2.2) we obtain a system of two equations

wy(7) wi' (x)
2. P+P—=—=k* EJ = —k2.
@ () e
The first equation of this system allows, after integration, for the determination of the
function w, = w,(7) with accuracy to the constant

P
(2.8) wy(t) = Cyexp P

Equations (2.8) and (2.6) make it possible to evaluate the strain rate at each point x and
each moment of time 7; the constant k% may be chosen correspondingly large so as to
give the minimum strain rate. The quantity P/(k?>— P) will be called a logarithmic creep
rate:

d d P
(2.9) —a—r—(lﬂ W) = -g-{-[lnwl(x)+ln WZ(T)] = -m- .
The problem of optimization is formulated as follows: we are looking for a shape

of the bar of the smallest volume which, for a given force P, will demonstrate a given
logarithmic creep rate, i.e. a given value of k2. In dual formulation we.look for a minimal

a

FiG. 1.

rate of creep at a given volume and force P. A construction of the formulae (2.8) and (2.9)
shows that the maximal value of k? guarantees a minimum creep rate at each point x
and each moment of the time 7, so we obtain here the absolute minimum, constant in time
and independent of the assumed norm of the creep rate expressed in terms of the variable
x [16]. Thus we seek the minimum of the functional

1
(2.10) V= [Fxdx = [k, i(x)dx
o 0

at fixed values of k2 and P.
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In the above formula k, is a cross-section coefficient, the exponent g determines the nature
of the convergence of the bar. The formula (240) defines the volume of the clamped bar,
in the case of a two-hinged bar the volume is.determined by means of an analogous integral
in the limits of integration from (—1/) to (J).

The exponent g (Fig. 2) equals: ¢ = 1 for a plane-convergent bar of a constant height

of the cross-section (buckling from the convergence plane), g = % for a uniformly con-

. ; ; 5 1
vergent bar (sections geometrically similar), ¢ = 3 for a plane-convergent bar of a constant

width of the cross-section (buckling in a plane of convergence).
The function I(x) must satisfy the second differential equation of the system (2.7);
however, the minimization of the functional with an auxiliary condition is not necessary

a b c
g=1 q=1/2 q=1/3
7z ()

4 .
k=12/h? ki=2VT  ke=bV12/b
h=const b=const

Fia. 2.

here, we can simply evaluate J(x) from the second equation of the system (2.7) and insert
it into Eq. (2.10)

] 1
o e o) e
0 0

We then obtain the functional which is analogous to the functional describing the optimal
shape of the compressed elastic bar.

In quest of its minimum we use the CeENcov method [1]. The Euler-Lagrange equations
conditioning the minimum of the functional (2.11) may then be written in the simple form

(2.12) oW} —w,0"” = 0.

For conservative loads, as GAJEWsKI and ZyczkOowskl have shown [3], the integral of
Eq. (2.12) assumes the form

(2.13) —gw i1 (w))"9*D = C,

where C_denotes the. integration constant and » = k, (k2 /E)*. Depending on the manner
of supporting the ends of the bar, the boundary conditions (2.3) or (2.4) should be added

to Eq. (2.13).
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3. Particular solutions

Integration of Eq. (2.13) with the boundary conditions (2.3) and the initial condition
(2.5) leads to the solution

x* P
3.1 w =f+(1—?) exp mr for g =1
in which f, = w,(0) denotes an elastic deflection at the point x = 0,
A, - N - 1
L % U e VD A 2l 1
(3.2) x=—sY1-s +narcsm]/1 s forg =
in which the parameter s equals
3n 32
— 23
(3.3) i= | 4 |/3(L) Wy
2C
and
(3.4) x= 5 (1452 @—Y5) forg=
with
314 2
il —-T-
3.9 5 = [ ( 3C) Wi,
B

where B denotes the integration constant.

For the above values of the exponent g, one may evaluate from the second equation
of the system (2.7) the moment of inertia I(x).

Using the relations occuring for z = 0, from Eq. (2.8) we have w,(0) = C;, and from
Egs. (2.6)and (3.1) (e.g. for ¢ = 1) one may evaluate w(x,0) = w, (x)w,(0) = C; w,(x) = w,..

lE(:rl |

10

05

LI i i L

FiG. 3.

Introducing w,(x) = w, (x)/C, into I(x) one may further determine F(x) = k,I%(x) (for
g = 1:F(x) = k.I(x)) and introduce a dimensionless cross-section F(x).

The optimal magnitude of the dimensionless cross-section F(x) for the particular values
of the exponent ¢ is presented graphically in Fig. 3.

11 Arch. Mech. Stos. nr 6/78
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4. Determinations of the corresponding initial deflection line

The initial deflection line and the line of the elastic deflection are related by the equation
M,
EI’

The above equation results from the superposition of the elastic deflection on the initial
shape. In this equation M, = Pw,, %_ = %_(x) = —w_.(x) denotes an initial curvature
of the bar before loading (v = _0) which, after loading, becomes x», = x,(x) (curvature
resulting from elastic deflection of the bar). The magnitude of the deflection function at the
point x = O (elastic bending deflection) is denoted by f, = w,(0) and initial deflection
by - = w_(0). The initial deflection f_ is assumed to be known. The examplary diagrams

of loading and deflection in terms of time are presented in Figs. 4 and 5.
2

Integration of Eq. (4.1) using the relation ] = — —’fE— % evaluated from Eq. (2.7) after
+

loading, leads to the solution w_ = [(k*— P)/k*]w, where, in the evaluation of the integ-
ration constants, the boundary conditions for the clamped at one end bar (2.3) were

@1 Ny p, -

P F

£

FiG. 4. FIG. 5.

used, and the function w, = w,(x) is the deflection line of the bar after loading under
the initial condition (2.5). The deflection f, is expressed in terms of the initial deflection
/- by means of the relation: f, = f_k?/(k*~P).

Below, as an example, we present the initial deflection line for a case ¢ = 1:

2__ 2 2
42) . f+£k,—P(l——‘}fz—) - f_(x_’;_,

The optimal solution obtained is restricted then to such an initial deflection line.

5. Final remarks

In this paper the optimal shape of an axially compressed bar of small initial curvature
subjected to creep buckling is determined. The considerations were restricted to the certain
particular function defining the initial deflection line. Under this assumption an analogy
with the elastic solutions was demonstrated. Solutions for the elastic range are also optimal
for linear creep of the Maxwell type, economy of the material is identical.

Assuming other initial deflection lines leads to numerical complications and the conclu-
sions presented her¢ are no longer valid.
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