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On the stability of capillary jets of elasto-viscous liquids
V. M. ENTOV (MOSCOW)

THE AUTHOR has discussed the problem of stability of capillary jets with special emphasis paid
to the discrepancy between the known experimental data and some theoretical predictions.
A formal analysis of hydrodynamic stability of the homogeneous jets in a quasi one-dimensional
approximation was preceeded by previous examinations of the influence of the elastic tensile
stresses on the stability of jet. The problem of stability at small disturbances was examined for
two models of visco-elastic liquids. Assuming the process to be sufficiently “rapid” it was
confirmed that the quickly increasing disturbances can not exist so that the visco-elastic
properties strengthen the stability of jet. Another destabilizing factor i.e. an interaction
between fluid and air circumfluent a jet was also consireded.

Autor przedyskutowal zagadnienie stabilnosci kapilarnej strugi cieczy, zwracajac szczegélng
uwagg na rozbieznosci migdzy znanymi wynikami eksperymentéw i niektérymi przewidywaniami
teoretycmyml Formalng analize¢ hydrodynamicznej statecznosci strugi jednorodnej w przybli-
Zeniu quasi-jednowymiarowym poprzedzono rozwazaniami nad wplywem rozciagajacych
naprezen spreZystych na stateczno$é strugi. Zagadnienie statecznosci przy malych zaburzeniach
zbadano dla dwoch modeli cieczy lepkosprezystych. W zalozeniu, Ze proces jest wystarczajgco
,,SZybki” stwierdzono, ze szybko wzrastajace zaburzenia nie mogg istnie¢, a wigc lepkosprezyste
wlasnoéci sprzyjaja stabilizacji strugi. Rozpatrzono tez inny czynnik destabilizujacy: oddzialy-
wanie miedzy ciecza i powietrzem otaczajacym strugg.

AsTop 06CymHMN BONPOC YCTOWUHMBOCTH KAIMWUIAPHOH CTPYH >KHIKOCTH, obpallad ocobeHHoe
BHMMaHHE Ha PacXOJMMOCTH MEXJY H3BECTHBIMH JKCIICPHMCHTAIHBIMH Pe3yJIbTaTaMHd M He-
KOTOPBIMH TEOPETHUECKHMH NpeABHAcHMAMH. DOpMaTPHOMY aHANMH3Y THAPOAWHAMMYECKOH
YCTOWUMBOCTH ONHOPOJHON CTPYM B KBaSHOJHOMEDHOM NPHOIIIKEHHMHM NpeUlecTBYeT 00-
Cy)(IeHHe BJMAHMA PpacCTATHBAIOUIHX YNPYIHX HANpAMKEHHW Ha YCTOHUMBOCTD CTDYH.
Bompot ycCTOWYMBOCTH NPH MANbIX BO3MYLUEHHAX MCCIENOBaH UIA ABYX MoAeseit Bsa-
KOYNPYTHX JKHOKocTeH. B npemmono)keHuu, YTO IIpoLECC ABIAECTCA MOCTaTOYHO ,,0bI-
cTpeim’’ 0DHApy)eHo, UTO GBICTPO BO3PACTAIOLIME BO3MYILEHHMA HE MOILYT CYLUECTBOBATE,
T. €. BASKOYIIPYTHe CBOMCTBa criocoGerByioT crabmnmsanmu cTpyd. PaccMoTper ToyKe Hpyroit
necrabunuaupyiomuii axTop: B3aUMONEHCTBHE MEXIY JKUAKOCTBIO M BO3AYXOM OKPYIKa-
IOLHM CTPYIO.

IT 1s SHOWN by numerous experiments that capillary jets of elasto-viscous liquids are
much more stable (i.e. have a considerably greater break-up length) than jets of
Newtonian viscous liquids of comparable viscosity [1-3].

A theoretical treatment of the jet stability problem within the framework of the theory
of small perturbations leads to the opposite conclusion. The growth rate of perturbations
is shown to be greater for an elastic liquid than for a Newtonian one of the same zero visco-
sity [1]. To elucidate the cause of such discrepance between the theory and experiments
note that in experiments [1] it was not the decrease in the growth rate of small disturbances
on the initial jet that was observed but the striking stability of thin filaments arising after
deformation of the initially homogeneous jet (cf. Fig. 9 of [1]).
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The overstability of elastic jets manifests itself in the ability of elastic liquids to form
long and durable filaments, the so-called “spinnability phenomenon” [4]. It is quite ob-
‘vious that for a jet to be pulled up from the free surface of a liquid as in [4] there must
exist considerable longitudinal tension along the jet.

It is easy to present a simple experiment which not only demonstrates the existence
of longitudinal tension along the jet axis but allows for an immediate evaluation of this
tension. To this end it is sufficient to shift aside carefully the glass in which the jet of an
elastic liquid falls. The jet catches the wall of glass and follows it for some distance. There-
fore with some skill one is able to get a stationary curved jet (Figs. 1 and 2).

Fic. 1. Fic. 2.

The projection of momentum balance on the normal to jet axis gives readily

©.1) T = Q?/f+ogfcosp/(dp/ds)
the continuity being taken into account.

Here T denotes the force of axial tension in the jet, f — the area of the jet cross-section,
@ — the angle between the horizontal line and the jet axis, ¢§ — the flow rate. Equation
(0.1) expresses jet tension in terms of flow rate and jet geometry. For the experiment
shown in Fig. 2 we have the capillary inner radius a = 0.1 cm, Q = 0.30 cm?® sec™! and
Eq. (0.1) gives for the axial tension T = 30—40 dynes, the liquid being a water solution
of 1.5 per cent PAA of zero viscosity 5.4 Po.

One can express the tension T as the sum of contributions of capillary (T,), elastic (T¢)
and viscous (T,) forces, T, = T,+ T,. Simple estimates give T, ~ 11 dynes, T, ~ 1 dyne
for the case shown(*), so we have T, = 20—30 dynes and, with the jet cross-section area
J = 7.1073 cm?, elastic stresses are of the order of

0. ~ T./f ~ 3.10% dynes - cm~2.

(*) Experimental work was carried out by S. Makhkamov and K. Mukuk.
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In other words, in the case considered the contribution of elastic stresses is of the order
of the capillary force.

Note that the static equilibrium of the sufficiently thin filaments might be well support-
ed by the capillary forces only. So it is natural to suppose that the main role of elastic
stresses consists in stabilizing the jet, i.e. in preventing the development of local constric-
tions on the jet. This supposition will-be supported by the detailed analysis at the end of
the paper. Now we shall discuss the role of elastic stresses in jet qualitatively.

Note that the local construction on the jet will not develop further if the “static part
of tension”

0.2) T, =T.+T,

increases as the diameter of the jet decreases.
Indeed, be the contrary true the total tension T being constant along the jet,

0.3) T = T,+T, = const

the decrease in T causes an increase in 7T, and a corresponding increase of the local rate
of stretching and rapid local thinning of the jet. This is, in a few words, the mechanism of
jet break-up if inertial forces can be neglected.

The static tension T is of the order of

0.9 T, = nmor+2Gri%r?,

o being the surface tension, G — the shear modulus of the liquid, 1 — the “elastic” (re-
versible) part of the stretch ratio of a liquid element. The jet tension is assumed to be suffi-
ciently great, so that 4 > 1. Let r = r,, 4 = A, correspond to the unperturbed state of
the jet and the disturbance in question is fast (the time of the disturbance development 7

is less than the liquid relaxation time 6) so that the relaxation can be neglected. Then
A= Aori/r? and

0.5) T, = nar+no,réfrt, o, = 2GA3,

T, has a maximum as the function of r at

. 1/3
©.6) A (@) i

kl |

Fia. 3.
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(see Fig. 3). Hence the static axial tension in jet decreases as r grows if 20, > a/fr,, so that
the jet is stable. Be the contrary true there would develop a local constriction of the radius ry
determined by T'(r,) = T(ro)

©.7 ry = [oord+ (odré+4o,ar3)'/?][2a.
If the jet is initially under zero tension (4, = 1), Eq. (0.7) changes into
0.8) ry = [Gr3+ (G?r§+2Gri a)"?]2a.

For G < afr,, the inequality being valid for thin filaments and (or) dilute solutions,
Eq. (0.8) simplifies to
0.9) ry = (Gr32a)'2, ry[ro = (Gro[2a)'? < 1.

The above argument, elementary as it is, gives some insight into the significance of
axial tension in the stabilizing of capillary jets or thin filaments of elastic liquids and co-

rresponds qualitatively to the observations [1].
Below we give a formal stability analysis of the capillary jet of an elastic liquid..

1‘

The stability of a cylindrical jet is considered in a long-wave (quasi-unidimenéional)
approximation.

The balances of mass and momentum are

dof | dofv _
(-0 o tox =0
dofv  dpfv®  dof  allu

(12) a tTax T ox T ox

(o — the density of liquid, f = na?, IT = 2na, a — the radius of the jet, v — the axial
velocity, ¢ — the axial stress, x — the axis coincides with the jet axis).

Two different types of liquid constitutive equations were used. Assume first the con-
stitutive equation of the form used in [4]

(1.3) 0As[At—el[se +es—2/38 - trace (se)] +s = 2ne,
o= —pd+s.

Here 6 — the relaxation time, s — the stress deviator, 4/A4t — the symbol of Jaumann’s
derivative, e — the strain rate tensor, ¢ — the stress tensor, § — the unit tensor.
Under the assumptions mentioned we have
e 0 s 0
(1.9 e=| —'/e , s=| —'zs
0 —-1/2¢ 0 =138

As the jet surface is stress-free, we get

(1.5) —p='5= —Ga, P =¢qu="/28
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*[25—qa 0
(16) G = —qu >

g« being the capillary pressure.
Therefore Eq. (1.3) reduces to an equation for s of the form

ds
22 4 ) —el e =
(1.7) 3(&‘ +o ) 5.0 +S Zna
(1.8) o =73/5—¢a.

Equations (1.1), (1.2), (1.7) and (1.8) describe the jet motion in a long-wave approxi-
mation. Consider small perturbations (denoted below by primes) of an initial state which
represents the state of a long relaxing cylinder, so that

(19 v=0,=0, s5=25=S8%xp(—18), f=/.
The perturbations are described by equations of the form

(1.10) af T it =0,

v’ 1 do' o oI’ o, Of

-1 E i i N
(1.12) o = 3[8"—qu,

o s’ L L0 5 {
(1.1.) 3 31 +85 = 21} '—'a}-, ‘)? = ?}'+ ]25630.

In what follows we consider “fast™ processes characterized by a time constant 7 ~ % <0.
So it is possible to neglect the time variation of s and to treat s, and n* as constants. Let
(L14) [ =foFe*cos kx, v = Ve*sinkx, ¢, = Qe*coskx,

o = Xe* cos kx, s' = Se* cos kx, II' = Ile**coskx.

Substitution of Eqgs. (1.14) in Egs. (1.10) — (1.13) results in

*
uF = _ 2, ook _.irﬁ__f“_kp,
e ofo e e ea
(1.15) uF+kV =0, X=3/,5-0,
(A+4pd)S = 29*kV, o* = a+ac, = 3[;aS,;
1 %\ ,
(1.16) Il =2na, f=na®, q.= —ac(a—z+-§x—z)a;

(1.17) 0=-1a (—--k=)
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Equations (1.15)—(1.17) have non-trivial solutions if
3In*kPp  o*k?
(400 ~ ea
Equation (1.18) is valid for fast processes only, so Ou > 1 and Eq. (1.18) simplifies to
3 (e=Dsot+2f0  ak?

2 ak? 12,2
(1.18) wr+ S50 (1-k%a?).

i 2.2
(1.19) iy . Za (1—k2a?).
The r.h.s. of Eq. (1.19) is negative provided that
(1.20) 3[(e—Dso+2n/[0] > a/a.

Thus rapidly growing disturbances (with positive Re u > 2 are absent provided that

[/
the inequality (1.20) holds true. In other words the initial axial tension s, stabilizes the
jet with respect to axisymmetrical disturbances. Here we assumed & > 1, which, accord-
ing to [4], is characteristic of the spinnability of a liquid.

Consider the same problem in the framework of constitutive equations of an elastic
liquid proposed by A. I. LEoNov [5]. In the simplest form Leonov’s equations are

2.1 AC|At—Ce—eC = —2Ce,,
(2.2) o+p6 = 2GC,
(23) &= —35 [C+C 1——S(", +Iz)]

Here C is the elastic strain tensor, I; and I, — its invariants, G — the shear modules,
— the irreversible part of the strain rate. For the quasi-undimensional motion in question
we get

9C € o _ 2 v2_o-1/2_ _
(2.4 o +v = 2C == 5 (c+C C cCc, C=Cy,
(2.5) 0= —g.+2G(C—-C~1/?).

Linearization of the equations in the neighbourhood of undisturbed state (Co, 0y, g0,
© = 0) results in

aC' 2 . _,fz) - o'
(2.6) - +35 (2C'o+ = Cs C C' =2Co—— g
.7 o = —gy+2GC'(1+1[,C533),
assuming

2.8 C'=Cte"coskx, V' = Vesinkx,
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we get through Egs. (2.4) and (2.7)
(2.9) uC* +C*[0* = 2CokV, 6% = 30[4C,+3C*—C512]1,
(2.10) = —Q+2GCH(1+1/,C~%?).

Equations (2.9) and (2.10) become identical with the last two in the set of equations (1.15)
if we put 0* for 6 and 4/3 C,0*G(1 +'/,C,~*?) for n*. So the characteristic equation for
“fast” perturbations takes the following form:

u = (o= 3an® [0%)K* o + - k(1 —K*a?)/(@g).

Accounting for Eq. (2.5) and the formula for n* and 6%, we get

_26Co(1-2C5*M)ak® | ak*(1-K’a®)

(2.11) p = 0 200

Thus for sufficiently great C,,
(2.12) 4C,G(1-2C5%%a > a

the r.hs. of Eq. {2.11) is negative for all wave-numbers k so that the growth of disturb-
ances is impossible.

Up to now we have been considering the surface tension as the single destabilizing
factor. For capillary jets moving through air with sufficiently large velocities, the dynamical
action of air may be of importance.

Following the work of WEBER [6] it is easy to get a corresponding characteristic equation
in long-wave approximation, the flow of air being considered as a potential one. The r.h.s.
of the equation [see Egs. (1.18) or (2.11)] has an additional term

G3.1) -g—;—ak’f;,(ka)Uz.

Here p, is the air density, U — the air velocity relative to the jet,

(3.2) Jo = —Ko(8)/K5(8),

K, — the modified Bessel function of the second kind. In the long wave range, ak < 1,
Jfo < 1. So the sufficient condition of jet “stability” takes the form

(33) 3(e=1)So+6n/0. > o, U?,
or
(3.4) 4C,G(1-2C5%)a > o, U?,

for models considered in Parts 1 and 2, correspondingly, capillary forces being neglected.
In other words, the initial elastic tension stabilizes the capillary jet in air if “elastic™ stresses
are of the order of the dynamical pressure of air.
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The last argument must be considered in qualitative terms as the assumption of po-

tential air flow results in a somewhat overestimated dynamical pressure of air (see [7]
for details). It may be hoped nonetheless that the order of necessary stabilizing stresses
is correct.
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