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Numerical simulation of dynamic processes 
in viscoelastic medium 

L. A. MERZIDEVSK.IJ (NOVOSIBIRSK) 

A MAXWELL-TYPE nonlinear model was proposed for a description of the state of deformation 
of viscoelastic bodies. A non-stationary one .. dimensional process of deformation was solved. 
A method of "deComposition of the discontinuities" applied till now in a gas-dynamics was 
applied. The numerical procedure proposed was applied to the solution ·or the impact problem 
of two identical plates. The results of computations for two different impact velocities 1.8 km/s 
and 2 km/s were presented. 

W pracy zaproponowano do opisu deformacji cial lepko-spr~zystych nieliniowy model typu 
Maxwella. Rozwi~no niestacjonarny, jednoW}miarowy proces deformacji. Wykorzystano 
metod~ ,rokJadu nieci'lglo§ci", stosowan'l dotychczas w gazodynamice. Proponowany schemat 
numeryczny zostal zastosowany do rozwiClzania zagadnienia zderzenia dwu identycznych plyt. 
Uzyskano rezultaty dla dwu r6i:nych pr~ko§ci zderzenia: 1.8 km/sek i 2 km/sek. 

,Il;JJa OnHCaHHJI .D;e<f>opMa~WI BJ13KOynpyrHX TeJI B pa60Te npe,ll;JIO>f<eHO HCnOJIL30BaTL He­
mmeibcylO MO.D;eJIL MaKcBeJIJioscKoro THna. PaccMoTpeH HeCTa~oHapHDm npo~ecc OAHO­
MepHo:H .D;e<l>opM~. ,Il;JIJI l.IHCJieHHOrO peWeHHR: HCnOJIL30BaH MeTO,ll; ,pacnaAa pa3pbiBOB", 
npHMeWIBWHHCR: ,ll;O CI{X nop TOJILKO B ra30AI{HaMHJ<e. TipeAJIO>KeHHaR: 'll{CJieHHaR: cxeMa 
npHMeHeHa K peweHHIO 3a.D;a'DI o coy.D;apeHWt .D;Byx pJiaCTHH H3 O,ll;HHaKosoro MeTaJIJia. 
TipHBe.z:teHbi pe3yJILTaTbi AJIR: .D;Byx pa3HDIX CKopocre:H coy.D;apeHHn: 1,8 KM/ceK u: 2 KM/ceK. 

AT DIFFERENT stages of a deformation process the solids subjected to intensive dynamic 
loads, e.g. explosive ones, cover all ·the spectrum of states from liquid to elastic. For the 
mathematical description of such processe a relevant model, i.e. the system of equations, 

·is needed. The solution of these equations, depending on the intensity of a load, must 
coincides with solutions of hydrodynamics equations, the theory of plasticity and elastic­
ity. Maxwell equations for a viscoelastic body can be used as such universal equations. 
The paper by G. I_. GuREVICH [1] should be apparently considered as the first attempt 
to construct the general model of strained solid on the basis of Maxwell equations. The 
concepts given in [1] were further developed in the monograph [2] in which the medium 
with nonlinear dependence of relaxation time on stresses and temperature at a linear rela­
tion of stresses and small strains, was studied. The Maxwell-type nonlinear model of 
strained body considered in th~s paper was developed by S. K. GoDUNOV with collaborators 
[3-8]. The closed system of equations describing the model is of the form 

{1) oe[E + 1 /2uiud o[euk(E + 1 /2UtUi)-UiCTik] _ O 
ot . + oxk - ' 

oeui 0 [eUt Uk - C1 ik] --+ = 0, i= 1,2,3, 
. ot oxk 
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(1) 
[cont.] 
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"Oeu oeu au, OUt 
--+u"--- --·+2e"'-= cp 11 , i = 1, 2, 3, 

ot ox" ox, ox, 

oe,j OEtj 1 (OUt OUj ) · auk OUt 
--+u~;---- -+- +e,"--+ei"-= f/JIJ, 

ot oxk 2 OXj ox, OXj ox, 

(i,j) = (1' 2), (1' 3), (2, 3), 

0';" = e ( oE -2e,J oE), E = E(e, D, LJ, S), 
ae,k oeu 

(! = (!o ydetll~u-2e,~:)ll, f/Jik = f/Jit(E11q, t), 

T ~ T(O', T), 

" = :2. V (<111 +a •• )2 + (<122 -a,,)2 +(a,, -<111)
2 +2(a~. +<Tt3 +.r,,), 

D = ~ (df+dt+di), LJ = d1d2d3, 

k· 
d, = In--'- k; = (1-2e,)-I/2' 

y' kl k2k3 ' 

where t is -the time, x- the Eulerian space coordinates, eo, e - the initial and current 
density of the medium, u1 - the components of the velocity vector, a1b e11 - the compo­
nents of stress and strain tensors, e1 - the main values of strain tensors, 0' - the intensity 
of tangential stresses, D, LJ the invariants. of the strain tensor (as and e), T, S- tempera­
ture . and entropy, E- the . density of intetnal energy per mass unit, T - the time of 
relaxation of tangential stresses, cp11 - the functions describing relaxation of tangential 
stresses in the medium. The following form of functions cp11 is proposed in [3]: 

1 ( Epq{!Eqp ~ ) 1 [~ 2 . 3(! ~ ] 
f/Jij = - - Etj- Ujj =- U;j- Etj+ Ufj , 

T (!Eu+f!£22+(!£33 2T (!Eu+f!£22+(!£33 

ae 
f!Etj = -~-· 

c;Elj 

This expression is invariant with respect to the choice of the orthogonal coordinate system 
and does not break the continuity equation and provide an increase in entropy. The depend­
ences E = E(e, D, S) (the variant ·of the energy equation where as determining values 
only two invariant strain tensors are used), T = -r(a, T) which are necessary for the solu­
tion of specific problems, are given in [5, 6]. The functions are constructed in the iorm of 
interpolating formulae having experimental data, with the function for relaxation time being 
constructed on the basis of data on the dependence of the dynamic yield limit a* upon 
strain velocity. These formulae close completely the system of equations describing the model 
considered. Due to the awkwardness of the system of equations, the solution of specific 
problems requires the use of a computer and hence the development of numerical calcu­
lation methods. It is also of interest to find a more general approach to the construction 
of the relaxation time function since available experimental data on the dependence of a* 
upon strain velocity are attributed to the narrow range of materials and to the restricted 
range .of change in determining parameters. Naturally, the formulated problems are most 
conveniently solved with the plane one-dimensional variant of the considered model {1): 
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~ a(eu) _ 
0 at + ax - ' 

(2) 

E = E(e, D, S), 1: = i(a, T). 

Here stress and strain tensors take a diagonal form since the selected coordinate axes 
coincide with their main axes; a 1 is the normal stress on the area perpendicular to the axis x. 

Let us consider the following procedure o( constructing the dependence of T on deter­
mining. parameters [9, 10]. Let us determine the strain tensor, which in the given case is 
characterized by the components e;, i = 1 , 2, 3, as the sum of tensors of elastic ef and 
plastic e'l strains: 

and this is true for small strains. The basic meaning of the tensor of plastic strain en is 
determined by the relation 

~ = (e~ -e~)/2 = 3~/4 = -3eV2. 

In the variables used 

en= 1 / 4 [exp (-2P)-exp (-2cx)]. 

It is known that stresses grow at the expense of a general strain and relax at the expense of 
a plastic one. It is natural to assume that relaxation time is inversely proportional to the 
velocity of plastic strain en, 
(3) 

The plastic strain is accomplished by the movement of dislocations, and its velocity is con­
nected with the characteristics of the dislocation field by the Orovan relation 

(4) 
den 

en=-= bNv, 
dt 

where N, v are the density of movable dislocations per volume unit and their mean velocity, 
respectively, b- the Burgers vector modulus. The values Nand v, in turn, are the functions 
of medium state. There are several different expressions for these functions constructed 
on the basis of plausible reasoning and corrected using experimental data~ The variant 
of dependences, suggested by GILMAN [11], became most common 

(5) N = N0 +Men, V= v0 exp[-(H0 +Hen)fa], 
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N 0 is the initial density of dislocations, M- the constant of multipli'"ation, H 0 - char­
acteristic stress of braking, 11,- the coefficient of strain hardening. JOHNSON and BERKER 

[12] describe the process of elastic· precursor decay in aluminium, using the functions 

(6) N = N0 [1 + (Qe"fbN1 )] exp (- l.e"), 
(j 

(J = --' 
fio 

where Q,N1 , 1., cr0 , m are some constants. The expression for 1: can be obtained with 
the help of Eqs. (3), (4), and (5) or (6). In the present paper the relations (5) were used, then 

(7) 
exp [(H0 +He") fa 

7: = u --='----=-=--_:_,.:....-
bvo(No +Me") ' 

where the proportionality coefficient u is still to be determined. It should be noted that 
the expression obtained does not depend · on the temperature of the medium. In fact, N 0 , 

M, H 0 , H, u assumed to be constant values, are the functions of temperature, and this 
makes it possible to hope for the construction of a more complete dependence of-,; on the 
parameters of medium state. However, the functions N 0 (t), ... are unknown at present. 
The value u was chosen from the condition of coincidence of experimental dependence 
of the dynamic yield limit er* on the strain velocity e with the analogous dependence cal­
culated, using Eq. (7). The problem of calculation of such dependencies is considered in 
[8] for the function -,;(er, T) given in [6]. The uniaxial strain of a thin rod with the initial 
length /0·, directed along its longitudinal axis, is considered in the mentioned reference. 
Let one of its ends be fixed at the point X= 0, and the other move with the velocity V(t), 
the velocity of different cross-sections is distributed linearly along the length, i.e. 

v(x, t) = V(t)xfl(t), 

t 

l(t) = 10 + J (t)dt. 
0 

The strain velocity 

. av V(t) 
e=-=--ax l(t) 

Only small strains are considered, then 

e = V(t)flo. 

From the condition of medium isotropy and problem symmetry 

fJ = y, 

and since the rod is thin, then 

0'2 = (j3 = 0. 

With accepted assumptions the system (2) takes the form 

da. . d. 
dt =e-T-, 

(8) 
dS 4b~ D 
Tt = r7' 
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where b0 is the velocity of propagation of transverse waves calculated according to the 
formula 
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FIG. 1. 

Figure 1 gives the curves of the dependence a 1 (e), e = LJ I/ I, calculated according to the 
system (8), using Eq. (7), and the dependence E = E(e, D, S) from Eq. (S),-the material 
of samples is steel containing 0.2% carbon, the initial temperature of the samples T = 
= 293°K. The curves 1-11 correspond to = l0- 3 , 10- 2 , 10-1, 10°, 101, 102

, 103 , 104
, 105

, 

106 , 107 1 fs. Here and in an·other figures the values of stresses are given in kbar. The curves 
show that in the accepted model the value of stress at strain constant velocity during 
the whole process of determation does not exceed some value which it is natural to compare 
with the yield limit value. The comparison of calculated dependence a.(e) with experi­
mental [13] is made in Fig. 2 (curves 1 and 2, respectively) from which it follows that the 

tg(fJ11 /kbar) 
1.6,------.--~----,---..,..------,----., 

-4 -2 0 2 4 

Flo. 2. 
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calculated values cr* coincides s~tisfactorily with the experimental ones up to the highest 
values e. The character of the curves 10 and 11 differs significantly from the corresponding 
curves 8, and this accounts for neglect of the influence of sample heating in Eq. (7). 

It is of interest to clarify the influence of different parameters, characterizing the field . 
of dislocations, on the value of the yield limit being calculated. The initial number of dislo­
cations turned out to infiunce the value insignificantly; the variation of N0 in the range 
105 ~ N0 .~ 109 changes cr* only by 2-3%. cr* and, on the contrary, it is very sensitive 
to the variation of the multiplication constant M. Evidence of this is given by the curve 
in Fig. 3 plotted for e = 103 1/s at the rest constant parameters in the expression (7). 
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FIG. 4. 

The dependence of cr* on the characteristic stress of braking H 0 is. shown in Fig. 4; the 
curves (1 -4) correspond to e = 10, 102

, 104, 105
• Let us refer now to the calculation of unste­

ady processes within the framework of the formulated model. The method of disintegration 
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of discontinuities [14], proposed and widely used for the solution of gasdynamic problems, 
was taken as the basis of numerical calculation. The method was worked out with a one­
dimensional variant of the model (2), howevet:, its extension to the more general case makes 
no difficulties in principle [14]. According to this method the parameters are calculated 
at each time step in two stages. At the first stage corresponding to an . intermediate step 
in time it is assumed that in each cell of the difference net the parameters describing the 
state of substance are eqpal. Disintegration of discontinuities occur at boundaries of cell, 
this stage ends in the calculation of mass, impulse, and energy fluxes through the given 
boundary. At the second stage, i.e. a new step in time, the parameters of medium in cells 
are calculated by means of integral conservation laws, using the obtained fluxes. Details 
of the method and examples of its application are given in the monography (14]. 

An accurate calculation of disintegration of discontinuities even in the case of gasdy­
namic problems requires significant expenditures of computer time. And still this is aggra­
vated by the fact that even the system (2) does not allow· automodel solutions, and the 
problem of discontinuity disintegration for the accepted model still requires and additional 
development. At the same time the experience of computer calculations shows that calcu­
lation of intermediate parameters, i.e. the first stage, can be made on the basic of linearized 
equations of an initial system. Such approximation gives good results even in the regions 
wherein the discontinuities of calculated values are present, apart from the regions where 
the process is described by smooth functions. Taking this into account, the system of equa­
tions obtained by the linearization of the system (2) was used to calculate· the first stage: 

~ + u ~ _ !i' arx -rJt!P_ ~%as == o, 
at ax ax ax ax 

arx arx au 
(9) 7ft+U ax- ax = O, 

ap u ap = o 
ot + ax ' 
as.+U as= 0 at ax ' 

where U is the main solution for velocity, 

!i' = Erm-Ea., 9l = Ea.p-E«, .7t' = Ea.S; 
the subscript denotes the differentiation with respect to the corresponding variable. The 
system (9) was obtained with the assumption that the medium possessed completely elastic 
properties. This assumption is justified if disintegration& are considered to occur at times 
which are shorter than the relaxation time. The system has four families of characteristics, 
i.e. the two-fold characteristic 

dx = U 
dt ' 

with the conditions fJ = {10 , S = S0 (trajectories with fJ and S remaining constant there­
along), and two characteristics 

dx y. -
-= U+ !l'-
dt - ' 
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with the conditions 

u+ y .Pcx+ .. !ff!__p=f .. !% S = const (u0 , CXo, Po, 80 ), 
r-P r.P · 

respectively. The substript "0" of all values corresponds to initial values of these parameters. 
The calculation of fluxes according to the characteristic form of the system (9) was made 
in accordance with. the procedure described in . [14]; To accomplish the second stage of 
calculation, rewrite the system (2) in the form of integral conservation laws: 

(10) 

f e(dx-udt) = 0, 

f [eudx- (eu2- <11)dt] = · o, 

f {[e(E+u212)]dx- [eu(E+u2/2)-<11u]dt} = 0, 

fe(/Jdx-uPdt) = f f e In (!o~!-Jp dxdt. 

The calculation is made in a movable difference net, and in this case the algorithm allows 
the calcubttion region to be nonuniformly divided into cells. Let the index i possess 
a number of values from 1 ton where n is the number of calculational points. We shall 
refer the values with an integer index to the boundaries of cells, and indices which differ 
from i by ± 112 to th~ values of parameters inside calculational cells. The line over the value 
means that it pertains to the new instant of time. Taking account of the difference net. 
the system (1 0) rewritten in the difference form is 

1 
7it+1/2 = [(!H1/2(x,+1-x,)- [(n9'),+1-(n9',)] · (j 

Xf+t-Xl 

1 
El+t = {[e(E+u212)]1+1/2(XI-xt) 

f!t+1f2(Xi+ 1 -x,) 

- {[n9'(3 + 1 I 29'2)- .Et9'li+ 1- [n9'(3 + 1 I 29'2)- .Et9'],} · (j 

+ [n(3 + 1 l28'2]1+ 1 CXi+t -x,+ 1)- [n(3 + 1 I29'2)],(X,-x,)} - 1 I 2uf+2' 

P,. 112 = { <eP>•• l/2 \x .. 1 - x,)- 1 < n.9' ill),. 1 -:- < :n:.9' iii).J · ~ 
+(n.11)1+t(.XI+t-Xi+1)-(n.11)i(x.-x,)+ l?i+t/2 In~ 

3Tf+ 1f2 (!i+ 1/2 

(xi+t-Xt)+(Xf+t-Xi). ~}/{ [h:- -)+J. \xt+l~x,)+(x,+t-Xt) (j]} 
2 u l?i+ 1/2 ,x,+ t --x, 2r ' 

i+l/2 

where n, 9', 3, fJI, .E1 are the fluxes of density, velocity, energy, p and <11, respectively; 
() is the step in time. · It should be noted that to provide stability in calculation, the value P 
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in the right part of the last equation of these system is taken on a new time step. The sta­
bility condition puts restriction on the step in time, which is similar to that for gasdynamic 
equations: 

c is the velocity of propagation of longitudinal sound disturbances in a given material.. 
To complete the calculation fully at the next step in time, the following equation should 
be used: 

cxi+ 112 = In <eDrei+ 112)- 2""/h+ 112. 

In the algorithm used the value of velocity of boundaries was given as boundary conditions. 
in the form of time functions. 
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Figures 5 and 6 give the results of calculation of a collision process of two similar plates_ 
The vel9city of collision v = 1.8 km/s and 2 kmjs, respectively. The diagrams show the­
dependence of mass velocity on the x coordinate at instants denoted by numerals near 
each curve (time in mcsec.). Mass velocities behind the front of waves propagating into­
plates are precisely equal to v/2. The values of the remaining parameters, i.e. density, 
stresses and temperature behind fronts, coincide practically with the values calculated 
using the known Hugoniot of material. The process of appearance and decay of elastic 
precursor amplitude is qualitatively reflected by calculations; the velocity of precursor 
propagation corresponds to the observed one during experiment. Shown by a dashed line 
in figures is the position of a shock wave front calculated at corresponding instants, using: 
a Hugoniot. Practically at all instants it corresponds to the beginning of a plastic wave. 
The plastic wave overtakes the elastic precursor which had appeared before, and . starting : 
with some instant a two-wave configuration transfers into that with one wave: Figure 6 
shows the dependencies of the distance between the beginning of the plastic wave (mini-
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FIG. 7. 

mum on the wave profile) and the front of the elastic precursor. This distance turned out 
to decrease linearly with the propagation of wave, and this indicates constancy of the 
.difference of velocities of waves themselves. On the whole the calculations showed the 
;applicability of the relation (7) and the proposed method of thorough calculation to cal­
·culate unsteady shock-wave processes in metals, taking account of the peculiarities of 
their course . 
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