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Numerical simulation of dynamic processes
in viscoelastic medium

L. A. MERZHIEVSKIJ (NOVOSIBIRSK)

A MAxXwELL-TYPE nonlinear model was proposed for a description of the state of deformation
of viscoelastic bodies. A non-stationary one-dimensional process of deformation was solved.
A method of *““decomposition of the discontinuities” applied till now in a gas-dynamics was
applied. The numerical procedure proposed was applied to the solution of the impact problem
of two identical plates. The results of computations for two different impact velocities 1.8 km/s
and 2 km/s were presented.

W pracy zaproponowano do opisu deformacji cial lepko-sprezystych nieliniowy model typu
Maxwella. Rozwiazano niestacjonarny, jednowymiarowy proces deformacji. Wykorzystano
metode ,,rokladu nieciaglodci”, stosowang dotychczas w gazodynamice. Proponowany schemat
numeryczny zostal zastosowany do rozwiazania zagadnienia zderzenia dwu identycznych plyt.
Uzyskano rezultaty dla dwu roéznych predkosdci zderzenia: 1.8 km/sek i 2 km/sek.

Ima onucaHus medopMauuy BASKOYOPYTHX Ten B paGoTe NpeioiKeHO HCIONL30BAaTh He-
nuHeiiHyI0 Mogens MaxcBemoeckoro Tuma. PaccMOTpeH HecTALMOHApHBIN MPOLECC OXHO-
mepHoit nedopmarpar. J{11A YHCIEHHOrO PElleHHA MCITONBE30BAH METOJ ,,pacnaja paspelBoB’,
NPHMEHABIIHICA O CHX HOP TOJBKO B rasoguHamuke. IIpe/Uio)KeHHas UMCIEHHAs CXeMa
NpHMEHEHAa K peIleHHI0 3afauy O COYA4apeHHA [OBYX PJACTHH M3 OJMHAKOBOTO METasa.
IlpuBenens! pe3ymbTaThl JUIA ABYX PasHBIX CKOpOCTeil coymapenmsi: 1,8 xm/cex u 2 KM/cex.

AT DIFFERENT stages of a deformation process the solids subjected to intensive dynamic
loads, e.g. explosive ones, cover all the spectrum of states from liquid to elastic. For the
mathematical description of such processe a relevant model, i.e. the system of equations,
is needed. The solution of these equations, depending on the intensity of a load, must
coincides with solutions of hydrodynamics equations, the theory of plasticity and elastic-
ity. Maxwell equations for a viscoelastic body can be used as such universal equations.
The paper by G.1. GurevicH [1] should be apparently considered as the first attempt
to construct the general model of strained solid on the basis of Maxwell equations. The
concepts given in [1] were further developed in the monograph [2] in which the medium
with nonlinear dependence of relaxation time on stresses and temperature at a linear rela-
tion of stresses and small strains, was studied. The Maxwell-type nonlinear model of
strained body considered in this paper was developed by S. K. Gopunov with collaborators
[3-8]. The closed system of equations describing the model is of the form
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where £ is the time, x— the Eulerian space coordinates, go, ¢ — the initial and current
density of the medium, u; — the components of the velocity vector, oy;, &; — the compo-
nents of stress and strain tensors, & — the main values of strain tensors, ¢ — the intensity
of tangential stresses, D, 4 the invariants of the strain tensor (as and g), 7, S — tempera-
ture and entropy, E — the density of intetnal energy per mass unit, v —the time of
relaxation of tangential stresses, ¢;; — the functions describing relaxation of tangential
stresses in the medium. The following form of functions ¢;; is proposed in [3]:
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This expression is invariant with respect to the choice of the orthogonal coordinate system
and does not break the continuity equation and provide an increase in entropy. The depend-
ences E = E(p, D, S) (the variant of the energy equation where as determining values
only two invariant strain tensors are used), T = 7(o, T) which are necessary for the solu-
tion of specific problems, are given in [5, 6]. The functions are constructed in the Torm of
interpolating formulae having experimental data, with the function for relaxation time being
constructed on the basis of data on the dependence of the dynamic yield limit o, upon
strain velocity. These formulae close completely the system of equations describing the model
considered. Due to the awkwardness of the system of equations, the solution of specific
problems requires the use of a computer and hence the development of numerical calcu-
lation methods. It is also of interest to find a more general approach to the construction
of the relaxation time function since available experimental data on the dependence of o,
upon strain velocity are attributed to the narrow range of materials and to the restricted
range of change in determining parameters. Naturally, the formulated problems are most
conveniently solved with the plane one-dimensional variant of the considered model (1):
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E=E(@,D,S), t=1(,T).
Here stress and strain tensors take a diagonal form since the selected coordinate axes
coincide with their main axes; o, is the normal stress on the area perpendicular to the axis x.

Let us consider the following procedure of constructing the dependence of = on deter-
mining parameters [9, 10). Let us determine the strain tensor, which in the given case is
characterized by the components ¢, i = 1, 2, 3, as the sum of tensors of elastic & and
plastic & strains:
& = E‘I’+€?’

and this is true for small strains. The basic meaning of the tensor of plastic strain " is
determined by the relation

& = (e1—£2)/2 = 36} /4 = —3e32.
In the variables used

& = 1/, [exp (—2f)—exp (—29)].
It is known that stresses grow at the expense of a general strain and relax at the expense of

a plastic one. It is natural to assume that relaxation time is inversely proportional to the
velocity of plastic strain &",
3 T~ (£")7L
The plastic strain is accomplished by the movement of dislocations, and its velocity is con-
nected with the characteristics of the dislocation field by the Orovan relation

_de"

@) i = = = bNo,

where N, v are the density of movable dislocations per volume unit and their mean velocity,
respectively, b — the Burgers vector modulus. The vakies N and v, in turn, are the functions
of medium state. There are several different expressions for these functions constructed
on the basis of plausible reasoning and corrected using experimental data. The variant
of dependences, suggested by GILMAN [11], became most common

%) N = No+M¢", v = voexp[—(Ho+ He")/o],

10*
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N, is the initial density of dislocations, M — the constant of multiplication, H, — char-
acteristic stress of braking, H — the coefficient of strain hardening. JoHNSON and BERKER
[12] describe the process of elastic- precursor decay in aluminium, using the functions

om _ o

(6) N = Ny[1+(Qe"[bN )] exp (—Ae"), v = ﬂow ; oy
0

where Q, N,, A, o5, m are some constants. The expression for = can be obtained with
the help of Egs. (3), (4), and (5) or (6). In the present paper the relations (5) were used, then

__exp [(Ho+ He") o
0 T oy (No+ Me™)

where the proportionality coefficient x is still to be determined. It should be noted that
the expression obtained does not depend on the temperature of the medium. In fact, N,,
M, H,, H, » assumed to be constant values, are the functions of temperature, and this
makes it possible to hope for the construction of a more complete dependence of 7 on the
parameters of medium state. However, the functions Ny(f), ... are unknown at present.
The value % was chosen from the condition of coincidence of experimental dependence
of the dynamic yield limit o, on the strain velocity & with the analogous dependence cal-
culated, using Eq. (7). The problem of calculation of such dependencies is considered in
[8] for the function z(e, T) given in [6]. The uniaxial strain of a thin rod with the initial
length /,, directed along its longitudinal axis, is considered in the mentioned reference.
Let one of its ends be fixed at the point X = 0, and the other move with the velocity (),
the velocity of different cross-sections is distributed linearly along the length, i.e.

o(x, 1) = V(t)x/I(2),

1) = lo+ [ (t)ar.
0

The strain velocity
g2 VO

dx I(t) ~
Only small strains are considered, then

e = V(@)l,.
From the condition of medium isotropy and problem symmetry

B=v

and since the rod is thin, then

o, =0, =0.

With accepted assumptions the system (2) takes the form

da . d

dr T’
8) )

s _ 4 D

da - T 1’



NUMERICAL SIMULATION OF DYNAMIC PROCESSES IN VISCO-ELASTIC MEDIUM 481

where b, is the velocity of propagation of transverse waves calculated according to the
formula

=V (@),
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Figure 1 gives the curves of the dependence o,(¢), € = 4l/l, calculated according to the
system (8), using Eq. (7), and the dependence E = E(p, D, S) from Eq. (5),-the material
of samples is steel containing 0.29; carbon, the initial temperature of the samples T =
= 293°K. The curves I-11 correspond to = 10"2, 10~2, 10~1, 10°, 10%, 102, 103, 104, 10%,
10%, 107 1/s. Here and in all other figures the values of stresses are given in kbar. The curves
show that in the accepted model the value of stress at strain constant velocity during
the whole process of determation does not exceed some value which it is natural to compare
with the yield limit value. The comparison of calculated dependence o,(é) with experi-
mental [13] is made in Fig. 2 (curves I and 2, respectively) from which it follows that the
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calculated values o, coincides satisfactorily with the experimental ones up to the highest
values &. The character of the curves /0 and 1/ differs significantly from the corresponding
curves 8, and this accounts for neglect of the influence of sample heating in Eq. (7).

1t is of interest to clarify the influence of different parameters, characterizing the field
of dislocations, on the value of the yield limit being calculated. The initial number of dislo-
cations turned out to influnce the value insignificantly; the variation of N, in the range
10° < N, < 10° changes o, only by 2-3%. o, and, on the contrary, it is very sensitive
to the variation of the multiplication constant M. Evidence of this is given by the curve
in Fig. 3 plotted for & = 10® 1/s at the rest constant parameters in the expression (7).

oy kbar
200

w0 - \

LN
NEAN

N
10 11 12 ,‘gy
FiG. 3.
Oy kbar
. 4
8
-3
6 //
; 2
/ ™
2 )
1 2 3 4 5 ]
D kbar

Fic. 4.

The dependence of o, on the characteristic stress of braking H, is. shown in Fig. 4; the
curves (I-4) correspond to & = 10, 102, 10%, 10°. Let us refer now to the calculation of unste-
ady processes within the framework of the formulated model. The method of disintegration
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of discontinuities [14], proposed and widely used for the solution of gasdynamic problems,
was taken as the basis of numerical calculation. The method was worked out with a one-
dimensional variant of the model (2), however, its extension to the more general case makes
no difficulties in principle [14]. According to this method the parameters are calculated
at each time step in two stages. At the first stage corresponding to an.intermediate step
in time it is assumed that in each cell of the difference net the parameters describing the
state of substance are equal. Disintegration of discontinuities occur at boundaries of cell,
this stage ends in the calculation of mass, impulse, and energy fluxes through the given
boundary. At the second stage, i.e. a new step in time, the parameters of medium in cells
are calculated by means of integral conservation laws, using the obtained fluxes. Details
of the method and examples of its application are given in the monography [14].

An accurate calculation of disintegration of discontinuities even in the case of gasdy-
namic problems requires significant expenditures of computer time. And still this is aggra-
vated by the fact that even the system (2) does not allow automodel solutions, and the
problem of discontinuity disintegration for the accepted model still requires and additional
development. At the same time the experience of computer calculations shows that calcu-
lation of intermediate parameters, i.e. the first stage, can be made on the basic of linearized
equations of an initial system. Such approximation gives good results even in the regions
wherein the discontinuities of calculated values are present, apart from the regions where
the process is described by smooth functions. Taking this into account, the system of equa-
tions obtained by the linearization of the system (2) was used to calculate: the first stage:

B W g%_ggg__ L

©) ar U% %=°’
?:4‘(!33 0,

%‘+U%=0,

where U is the main solution for velocity,
& = En—Ey, R=Ey—E,, N =Eg;;
the subscript denotes the differentiation with respect to the corresponding variable. The
system (9) was obtained with the assumption that the medium possessed completely elastic
properties. This assumption is justified if disintegrations are considered to occur at times
which are shorter than the relaxation time. The system has four families of characteristics,
i.e. the two-fold characteristic
dx

T

with the conditions f = f,, S = S, (trajectories with # and S remaining constant there-
along), and two characteristics

dx

— =UtV2,
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with the conditions

— _ R L, KX
u+ V(-%H' ]-/?ﬁ-i‘ V?”S = const (uo, %, fos So),
respectively. The substript “0” of all values corresponds to initial values of these parameters.
The calculation of fluxes according to the characteristic form of the system (9) was made
in accordance with the procedure described in [14]. To accomplish the second stage of

calculation, rewrite the system (2) in the form of integral conservation laws:
§ o(dx—udr) = 0,
f[gudx— (ou?—o0,)dt] =0,
f {lo(E+1?[)ldx — [ou(E+u?[2)— oy u)dr} = 0,

f‘e(ﬁdx—uﬁdt) = ff 0 Eﬁ%%_—ié dxdt.

The calculation is made in a movable difference net, and in this case the algorithm allows
the calculation region to be nonuniformly divided into cells. Let the index i possess
a number of values from 1 to n where n is the number of calculational points. We shall
refer the values with an integer index to the boundaries of cells, and indices which differ
from i by +1/2 to the values of parameters inside calculational cells. The line over the value
means that it pertains to the new instant of time. Taking account of the difference net,
the system (10) rewritten in the difference form is

(10)

o 1
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where n, &, 5, #, X, are the fluxes of density, velocity, energy, f and o, respectively;
4 is the step in time. It should be noted that to provide stability in calculation, the value g
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in the right part of the last equation of these system is taken on a new time step. The sta-
bility condition puts restriction on the step in time, which is similar to that for gasdynamic
equations:

3 Xip1—%
d<
b max (u;+c, u;—c)’
¢ is the velocity of propagation of longitudinal sound disturbances in a given material.
To complete the calculation fully at the next step in time, the following equation should
be used:
%y 172 = In (Qo/@141/2) =2B141/2-

In the algorithm used the value of velocity of boundaries was given as boundary conditions.
in the form of time functions.
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Figures 5 and 6 give the results of calculation of a collision process of two similar plates.
The velocity of collision v = 1.8 km/s and 2 km/s, respectively. The diagrams show the-
dependence of mass velocity on the x coordinate at instants denoted by numerals near
each curve (time in mcsec.). Mass velocities behind the front of waves propagating into-
plates are precisely equal to ©/2. The values of the rémaining parameters, i.e. density,
stresses and temperature behind fronts, coincide practically with the values calculated
using the known Hugoniot of material. The process of appearance and decay of elastic
precursor amplitude is qualitatively reflected by calculations; the velocity of precursor
propagation corresponds to the observed one during experiment. Shown by a dashed line
in figures is the position of a shock wave front calculated at corresponding instants, using:
a Hugoniot. Practically at all instants it corresponds to the beginning of a plastic wave.
The plastic wave overtakes the elastic precursor which had appeared before, and starting
with some instant a two-wave configuration transfers into that with one wave. Figure 6
shows the dependencies of the distance between the beginning of the plastic wave (mini~
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mum on the wave profile) and the front of the elastic precursor. This distance turned out
to decrease linearly with the propagation of wave, and this indicates constancy of the
difference of velocities of waves themselves. On the whole the calculations showed the
-applicability of the relation (7) and the proposed method of thorough calculation to cal-
culate unsteady shock-wave processes in metals, taking account of the peculiarities of
their course.
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