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Fundamental equations of continuous structural media 
II. A simplified structural medium 

S. ZIELINSKI (L6DZ) 

THE SUBJECT of considerations is the continuous medium in which, besides the force and couple­
stresses,p11and m11, also higher orderstressesb'1"occur. Displacement of such media are described 
by the linear displacement vector u1 , the vector of unconstrained rotations q;1 and the generalized 
displacement tensor tp11 • The starting point of our considerations are the results obtained in 
the paper [1] dealing with a general case. The model of a particle of the simplified medium 
represents a system consisting of its geometric center and a set of planes passing through it .. 
The planes may move together with the geometric center and, in addition, may be subject to· 
independent displacements and rotations. The planes are not allowed to move with respect 
to each other along the lines of intersection, as in the general case; in the simplified model the­
planes are also prevented to rotate about each other. The particle of such a simplified structural 
medium is a system with 15 degrees of freedom; the medium consisting of such particles is. 
governed by 105 equations with the corresponding boundary conditions; 15 of them are the 
equations of motion, 45 geometric equations and 45 physical relations. From such a system 
it is possible to determine the 105 statical and geometrical unknowns appearing in the model 
of the simplified structural medium. 

Przedmiotem rozwa.Zan jest osrodek ci~gly, w kt6rym opr6cz napi~c silowych p 11, napi~ mo­
mentowych m11 wyst~puj~ napi~ia wyzszego rz~du b'1". W osrodku tym przemieszczenia opisane 
SCl przez wektor przemieszczen liniowych u1, wektor niezaleznych obrot6w fPt oraz tensor uog61-
nionych przemieszczen "Pil· Punkt wyjscia stanowi(l wyniki otrzymane w pracy [1] dla przypadku 
og6lnego. Model CZ(lstki uproszczonego osrodka stanowi nadal uklad zlozony ze srodka geo-· 
metrycznego i odpowiednich plaszczyzn przechodZ(lych przez ten srodek. Plaszczyzny te opr6cz 
przemieszczen wraz ze srodkiem geometrycznym doznaj~ niezaleznych przemieszczen i odksztal-· 
cen. Nadal zakladamy, :le wzdluz kraw~dzi przeci~ia nie mog(l si~ one nawzajem przemieszczac: 
wzgl~em siebie. Dla omawianego modelu uproszczonego zakladamy dodatkowo, :le plaszczyzny 
te nie mog(l si~ wzgl~dem siebie obracac. Reprezentowana przez powyzszy model CZ(lstka uprosz­
czonego osrodka strukturalnego jest ukladem o 15 stopniach swobody. Dla osrodka ci(lglego. 
zlozonego z takich CZ(lstek otrzymano 105 r6wnan z odpowiednimi warunkami brzegowymi. 
W sklad tego ukladu wchodzi 15 r6wnan ruchu, 45 r6wnan geometrycznych oraz 45 zwi(\Zk6w 
fizycznych. Z powyzszego ukladu r6wnan mo:lemy w spos6b jednoznaczny wyznaczyc 105 
niewiadomych statycznych i geometrycznych wyst~puj~cych w modelu uproszczonego osrodka 
strukturalnego. 

IJpe~MeTOM pacCyHmeHHH HBJUieTCH CIIJIOIIIHaH cpe~a, B I<OTOpOH I<poMe CHJIOBbiX HaiipH­
>KeHHH p 11, MoMeHTHbiX Harrpnmemm m11, BbiCTyiiaroT HarrpnmeHHH BbiCIIIero rropn~a biJ" .. 
B 3TOH cpe~e rrepeMemeHHH orrHCbiBaroTcH BeKTopoM JIHHeHHbiX rrepeMemeHHii u 1 , aeKTo­
poM He3aBHCHMbiX apameHHH: f/Jt H TeH3opoM o6o6meHHhiX rrepeMemeHHii f/JtJ. Hcxorozyro­
TOq}{Y cocraBJIHIOT pe3yJibTaTbi rroJIYlleHHbre B pa6oTe [1] rom o6mero CJI}'llaH. Mo~eJib ~ac­
THQbi yrrpomeHHOH Cpe~I COCTaBJIHeT B ~aJibHeHIIIeM CHCTeMa COCTOHman H3 reoMeTpH~eC-· 
I<OrO QeHTpa H COOTBeTCTByromHX IIJIOCI<OCTeH, IIpOXOMmHX ~epe3 3TOT QeHTp. 3TH IIJIOC­
I<OCTH, I<pOMe rrepeMemeHHH COBMeCTHO C reoMeTpH~eCKHM QeHTpoM, HCIIblTbiBaiOT He3aBH­
CHMbie rrepeMemeHHH H ~e<PopMaQHH. B ~aTILHeHIIIeM rrpe~oJioraeM, ~o B~OJib rpaHH rre-· 
pece~eHHH OHH He MOrYT B3aHMHO rrepeMemaTLCH OTHOCHTeJibHO • ce6H. ,1:Lrm o6cy~aeMOH 
yrrpomeHHOH MO~eJIH rrpe~oJiaraeM ~OIIOJIHHTeJibHO, ~0 3TH IIJIOCI<OCTH He MOrYT OTHOCH­
TeJibHO Ce6H BpamaTbCH. IJpe~CTaBJieHHaH BbiiiieyrroMHHYTOH MO~eJiblO ~aC'fima yrrpoiQeHHOH 
CTpYI<TYPHOH cpe~bl HBJIHeTCH CHCTeMOH C 15 CTerreHHMH CB060~I . .I(JIH CIIJIOIIIHOH cpe~I> 
COCTOHmeii H3 Tai<HX ~aCTHQ, IIOJiy~eHbi 105 ypaBHemm C COOTBeTCTBYJOmHMH rp~IMH 
yCJioBHHMH. B cocraa 3To:H CHCTeMhi axo~ 15 ypaBHeHHH: ~BH>KeHHH, 45 reoMeTpH~ecKHX 
ypaBHemm H 45 <l>H3~eCKHX COOTHOIIIeHHH. H3 BbiiiieyrrOMHHYTOH CHCTeMbl ypaBHeHHH MO­
>KeM e~CTBeHHbiM o6pa3oM orrpe~eJIHTb 105 cra~ecKHX H reoMeTp~ecKHX HeH3BeCTHbiX> 
BbiCTYIIaiOIQHX B yrrpomeHHOH MO~eJIH CTpyKTypHOH cpe~I. 
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176 S. ZIELINSKI 

1. Generalized displacement tensors (/Jij, "Piik 

-BEFORE passing to the presentation of simpler models of the medium, let us return to the 
-displacement tensors (/JiJ, "PtJk introduced in the paper [1]; all the notations and definitions 
introduced in that paper remain valid. Let us start with tensor fPtJ by decomposing it int 

the symmetric and anti'symmetric parts. According to the definition, 

(1.1) 

All components of the tensor are expressed as sums of their symmetric and antisymmetric 

parts, qJu = (/J(iJ> + (/J[iil. In the matrix form 

0 

0 

'The antisymmetric part of tensor fP£tn is a pseudo-tensor and may be represented in terms 
of the vector cpk : · 

{1.3) 

-sijk denoting the Ricci tensor. In a matrix notation 

{1.4) 

Multiplying the expre~sion (1.3) by the Ricci tensor and contraction of the indices yields 
the formula inverse to (1.3), 

(1.5) 

!his relation may also be derived directly by comparing the corresponding terms of matrices 
{1.2) and (1.4). 
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FUNDAMENTAL EQUATIONS OF CONTINUOUS STRUCTURAL MEDIA. II 177 

Passing to the physical interpretation of CfJu let us observe that its antisymmetric part 
expressed in terms of the vector CfJk represents the independent rotation of the particle 
treated as a rigid body (Fig. 1). The individual components cp 1 , cp2, cp3 of cp describe the 
rotations about the corresponding axes {yi }. 

FIG. 1. 

The symmetric part CfJ<lJ> represents certain deformations of the particle. The components 
CfJut> = CfJu, CfJc 22> =, cp22 , CfJc 33> -= cp33 lying at the principal diagonal of the matrix (1.2)1 
are the elongations measured along the axes y 1 , y 2 , y 3 • For instance, the elongation in the 
direction of y 2 connected with the component cp22 is shown in Fig. 4 of paper [1]. The 

remaining terms of the matrix (1.2)1: CfJu 2> = CfJc 21 >, = ~ (cp12 +CfJ21), CfJu~> = CfJ<JO = 

1 ( ) 1 d' d' . = 2 (/)13 + (/J31 , CfJC23> = (/Jc 32> = 2 ( cp23 + cp32) repres~nt the correspon mg tstorttons. 

The distortion connected with the components CfJc23> = CfJc 32> is shown in Fig. •2. 

FIG. 2. 

12 Arch. Mech. Stos. nr 1-2/86 
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178 S. ZIELINSKI 

Let us return to the decomposition (1.1) of tensor CfJu into the symmetric CfJciJ> and 
antisymmetric (/J[iJJ parts. The homogeneous part of the relative displacement u', Eq. (2.8) 
in [1], may be represented in the form 

(1.6) u~ = [ (/J[Ikl + CfJ<Ik>]Y
1
• 

The antisymmetric component in (1.6) is now replaced with CfJm according to Eq. (1.3). 
We obtain 

(1.7) 

First term of this expression may be considered as a rigid body rotation of the whole 
particle, and the second one- as the strains shown in Fig. 4a in [I] and in Fig. 2. 

Passing to the displacement tensor 'lJliJk let us consider the tensor function QiJ (YA) 
defined in [1]; decompose it into the symmetric Q<iJ> and antisymmetric Q[iJJ parts, 

(1.8) 

Here 

QiJ = Q< iJ) + Q[ii]. 

Qii+Qii 
Q<ii) = ---=--

!::=: 2 

Qli-Qii 
Q[ii] = ----,-----

2 

are the respective symmetric and antisymmetric parts of tensor QiJ. In matrix notation 

Q11 
Q12+Q21 Q13+!J31 

2 2 

Q<ii) = 
Q21 +!J12 

Q22 
Q23+!J32 

2 2 

Q31 +!J13 Q32+fJ23 
Q33 

2 2 
~.9) 

0 
Q12_Q21 Q13_Q31-

2 2 

Q[ii] = 
Q21_Ql2 

0 
Q23_[J32 

2 2 
Q31_Ql3 Q32_Q23 

0 
2 2 

The antisymmetric part Q[iJl may be replaced with the vector Qk in the following 
manner: 

(1.10) 

or, in tensorial notation, with 

(1.11) 

Q3 
' 

0 ' 
-Ql, 
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FUNDAMENTAL EQUATIONS OF CONTINUOUS STRUCTURAL MEDIA. II 179 

The inverse formula takes the form 

(1.12) 

Let us assume the tensor Q to be of the form (2.10) of [1]. In such a case its symmetric 
and antisymmetric parts shown in formula (1.9) are transformed and take the form 

rx1!31 
a1(32 +rxz(31 a1 (33 + o:3 (31 

2 2 

Q<ii) = 
az (31 + a1 (32 

a2(32 
a2 (33 + a3 (32 

2 2 

a3 (31 + a1 (33 a3 (32 + a2 (33 
a3(33 

2 2 
(1.13) 

0 
a1 (32 _ a2 (31 at (33 _ a3 {P 

2 2 

Q[il] = 
az (31 _at (32 

0 
a2 (33 _ a3 (32 

--2- 2' 

a2 (31 _ a1 (33 a3 (32 _ a2 (33 
0 --2-- 2 

Vector Qk defined by Eq. (1.12) assumes now the form 

(1.14) - k 1 k "(3. Q =-s--a~ J 2 ,lJ 

what follows also from a direct comparison of the corresponding terms of matrices (1.10) 
and (1.13)z. 

The non-homogeneous part of the relative displacement u" given by Eq. (2.9) of paper 
[1] may, in view of relation (1.8), be represented in the form 

(1.15) u~'(YA,XK,-r) = 'lfJiJk(.Q[iil+Q<il>). 

The first right-hand term is antisymmetric in the dummy indices i, j, and the second one 
is symmetric. It follows that 

(1.16) 

Pseudotensor 'lfJ[iJJk may be expressed by means of a tensor of rank 2, 

(1.17) 

The inverse formula holds also true, 

(1.18) 1 iJ 
'lfJlk = 2 s, 'lfJijk. 

Substitution of the right-hand sides of Eqs. (1.11) and (1.17) into the formula (1.16) 
yields 

(1.19) II (YA xx ) - •l ij nm + n(iJ) uk , , r - su 'lfJLk e ·m~& 'lfJ<iJ)k~& · 

12* 
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180 s. ZIELINSKI 

Contraction with the Ricci tensors in the above formula leads to the result 

(1.20) 

Let us introduce the vector n and define it as the vector product of vectors ex and ~' 
n = a X ~· In indicial notation 

(1.21) Q' = e~lJ ri{Ji. 

On comparing the formulae (1.12) with (1.21) we conclude that Qk = il'Jk. Substituting 
this result into the Eq. (1.20) we obtain 

(1.22) u~'(Y'\ XK, r) = 'f/Jzk(XK, r)Q'(YA)+VJ(lj>k(XK, r)Q<i1>(YA). 

The total displacement defined by Eq. (2.15) of paper [1] assumes, in view of Eqs. (1.7) 
and (1.22), the form 

(1.23) wk(YA, XK, r) = uk(XK, r)+ ezimfPm(XK, r)y1(YA)+({J(zk>(XK, r)y1(YA) 

+VJzk(XK, r)Q'(YA)+'f/J(lJ)k(XK, r)Q<il>(YA). 

Let us now pass to the simplified model of a structural medium. In such a model it 
will be assumed that the symmetric part fPW> of fPil and the symmetric (in indices i, j) 
part of tensor 'fP<lJ>k vanish, fPOJ) = 'fP<lJ>k = 0. Total displacement of the micro-element Y 
of particle X expressed by Eq. (1.23) is simplified to the form 

(1.24) wk(YA, XK, r) = uk(XK, r)+ezkmfPm(XK, r)y1(YA)+'f/Jzk(XK, r)Q'(YA). 

Vector uk describes the rigid body displacement of the whole particle X; the rotation 
vector fPm corresponds to the particle rotation about the axes passing through its geometric 
center, and tensor 'f/Jzk represents its nonhomogeneous displacement. The first two right­
hand terms of the expression (1.24) describe the behaviour of the particle treated as a rigid 
body; its strains are connected with tensor 'f/Jzk only. To illustrate the character of these 
strains let us assume the vectors a and ~ defining the vector function Q' of (1.21) to be 
linear in the coordinates {y1} and to satisfy the relations (2.12) of paper [ 1 ]. 

Substitution of relations (2.12) [1] into the Eq. (1.21) makes it possible to calculate 
the components of Q'. We obtain 

(1.25) 

where 

(1.26) 

The non-homogeneous relative displacement u" is described by the third term of expression 
(1.24), 

(1.27) 

The physical character of displacements u;' connected with the components 1p 12 , 1p22 , 1p32 

of tensor ~' under the assumption that the vector function Q' has the form (1.25)~ is 
illustrated by Fig. 3. Displacements u~' and u;' connected with the remaining components 
of ~ are of a similar character. 
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FUNDAMENTAL EQUATIONS OF CONTINUOUS STRUCTURAL MEDIA. II 181 

a b 

c t/ 

FIG. 3. 

The model of a particle of the simplified structural medium remains the same as in the 
general case discussed in [1]. The simplification consists in the assumption that the planes 
passing through the geometric center are not allowed to rotate with respect to each other. 
However, they may be subject to independent warping. Warping of one of the planes 
is shown in Fig. 8c of paper [1]. 

In addition to warping, each plane is subject to independent tangential displacements 
(and deformations) as shown in Fig. 8b of paper [1]. 

Motion of the simplified structural medium is described by the tensor functions 

uk = uk(XK, t), 

(1.28) (/Jk = q;k(XK, t), 

'f/Jlk = 'f/Ju:(XK, T). 

Determination of all the 15 components of these functions determines the position of each 
particle of the medium considered. From the dynamical point of view, each particle repre­
sents a system with 15 degrees- of freedom. 
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182 s. ZIELINSKI 

2. Equations of the simplified structural medium 

The individual groups of the simplified medium result from the corresponding equa­
tions of the general model presented in [1], in which suitable simplifications discussed 
in the preceding section must be introduced. 

The geometric relations (2.20) of paper [I] are reduced to the form 

Yu = uJ, t- e;tCfJk, 

(2.1) 

'Y/ktj = 1JltJ. k. 

Tensor uil is derived from Eqs. (2.20h [1] as the antisymmetric (in indices k, I) part of tensor 
u 1k, use being made of the definition ui[klJ = e~f u;1 and the relations ( 1. 3) and ( 1.18). 
By introducing the definition 'YJki[mnJ = Em~1'YJktJ and the relation (1.18) into the equation 
(2.20h of paper [1], relation (2.1h is obtained. 

In order to derive the equations of motion, the boundary conditions and the constitutive 
relations, the generalized Hamilton principle formulated in [1] (Eq. (2.25)) must be used. 
The procedure is analogous to that applied in the general case. It was extensively discussed 
in the previous paper [1] and there is no need to return to the problem here. 

Equations of motion of the simplified medium have the form 

(2.2) mi~~ + e!tkPik +h1 = e!tk[eiijk + ektm(!~t<Pm +vi'¥?], 

btl~ 1 + mlk + glk = ,u/uk + ekilvilq?, + p/i:,Pt 

A number of new notations have been introduced here. The first group, 

(2.3) ptj = au mil = au bilk = _J__!!_ 
ayt1 ' auil ' a'YJtJk 

defines the force stress tensors, couple stress tensors and higher order stress tensors, respec­
tively. U is, as before, the internal energy density, and it is assumed to be a function of the 
st~ain tensorsintroduced in Eqs. (2.1), U = U(yiJ, u;1 , 'YJJJk), representing the counterpart 
of Eqs. (2r25) in paper . [1]. 

The second group contains, In addition to the definitions (2.32) of(], rl, e;1 ([1]), the 
following notations: 

(2.4) ~jj = ~ J yL £J1e dw, 11,t = ~ J !J'e dw, t-tij = ~ J Qi Q 1(! dw. 
(J) 

which may be termed the generalized densities of the medium. 
The following symbols 

(2 .. 5) 
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FUNDAMENTAL EQUATIONS OF CONTINUOUS STRUCTURAl.. MEDIA. II 183 

denote the densities of the generalized body forces. 
The boundary conditions are reduced to the form 

pilni = Pfn>' 

(2.6) m'int = mfn>' 

bilknt = b{!> 

where n1 are the components of the outer normal n to the boundary bounded by the surface 
s. The following notations are used in Eq. (2.6): 

a 

(2.7) j j J i - k d 
m<n> = e.tk Y P<n> a, 

a 

b lk _ J nJ-k d 
(n) - .::.~ P(n) (] • 

a 

The remaining notations have been explained in paper [1]. Equations (2.6) represent 
the static boundary conditions expressed in terms of the force, couple and higher order 
stress tensors. 

The internal energy density U = U(Ytb x 11 , 'YJtlk) is assumed to be a function of strain 
tensors. It may be expanded, as in the general case, into Taylor's series in the neighbourhood 
of the undeformed (natural) state (y?1 = x?1 = 'YJ?Jk = 0). Making use of the definitions 
(2.3) we obtain the following constitutive relations: 

(2.8) 

with the notations 

(2.9) 

ptl = A tiklYkt + Dilklxk, + Etlklm'YJklm, 

mLJ = DLlklYkt + CilklxkL + pilklm'YJklm' 

bilk _ Eilklmy + ptlklmx + Bilklm'YI 
- , klm lm 'limn' 

The constitutive relations express the stress tensors in terms of the strain tensors. The 
magnitudes A, B, C, D, E, F defined in Eq. (2.9) are the elasticity tensors of the medium. 

In a medium in which each particle has a center of symmetry, tensors D, E, F vanish, 
and the constitutive relations assume the form 

(2.10) 

ptl = AilkiYkL, 

mii = Cilklxkl' 

bijk = Bilklmn'YJlmn. 

http://rcin.org.pl



184 s. ZIELINSKI 

In the equations of motion (2.2) it should be assumed in such a case that rl = p,i = vii = 0. 
The simplified structural model is described by means of 105 equations: 15 equations 

of motion (2.2), 45 geometric relations (2.1) and 45 physical relations (2.8) or (2.10). 
These equations, together with the boundary conditions (2.6), allow for a unique determina­
tion of I 05 unknown statical and geometrical parameters of the medium considered. 

45 statical unknowns consist of 9 force stress components piJ, 9 couple stress compo­
nents m11 and 27 higher order stress components bflk. 60 geometrical unknowns are repre­
sented by 45 strain tensor components and _15 displacement components. The strain tensor 
components may be divided into 9 components of y 11 , 9 components "'tl and 27 components 
of the tensor 'YJilk. The displacement tensor components consist of three vector components 
u1, 3 vector components q;1, and 9 tensor components 'lfJtl. 

As in the general case discussed in [1], also here the equations of motions may be 
expressed in terms of displacements. Stresses pil, mu and b11k are eliminated from the 
equations of motion (2.2) by means of the physical relations (2.8) or (2.10), and then the 
geometric relations (2.1) are used to eliminate the strain tensors. The resulting 15 equations 
represent the set of equations of motion containing 15 unknown components of the gene­
ralized displacement tensors u1, q;1, 1p11 • This problem has been discussed in detail in 
paper [1]. 

The models of continuous media presented in this paper are rich in possible applica­
tions but rather complicated, since they involve a high number of unknown geometrical 
and statical parameters. In many practical applications such complicated models ~re not 
necessary; that is why a much simpler model of a medium called a bimoment medium 
is used in some cases. In such a medium, besides the force and couple stresses, also the 
socalled bimoment stresses are introduced. The geometrical magnitudes are represented 
by linear displacement, unconstrained rotatidns, and, additionally, by independent warping 
functions. The bimoment medium and its possible applications will be dealt with in a sepa­
rate paper. 
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