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Fundamental equations of continuous structural media
II. A simplified structural medium

S. ZIELINSKI (10ODZ)

THE suBJECT of considerations is the continuous medium in which, besides the force and couple
stresses, p'/and m'/, also higher order stresses b'/* occur. Displacement of such media are described
by the linear displacement vector u;, the vector of unconstrained rotations ¢, and the generalized
displacement tensor ,;. The starting point of our considerations are the results obtained in
the paper [1] dealing with a general case. The model of a particle of the simplified medium
represents a system consisting of its geometric center and a set of planes passing through it.
The planes may move together with the geometric center and, in addition, may be subject to:
independent displacements and rotations. The planes are not allowed to move with respect
to each other along the lines of intersection, as in the general case; in the simplified model the
planes are also prevented to rotate about each other. The particle of such a simplified structural
medium is a system with 15 degrees of freedom; the medium consisting of such particles is.
governed by 105 equations with the corresponding boundary conditions; 15 of them are the
equations of motion, 45 geometric equations and 45 physical relations. From such a system.
it is possible to determine the 105 statical and geometrical unknowns appearing in the model
of the simplified structural medium.

Przedmiotem rozwazan jest osrodek ciagly, w ktorym oprocz napieé sitowych p'’, napieé mo-
mentowych in'/ wystepuja napigcia wyzszego rzedu b'/*. W osrodku tym przemieszczenia opisane
sg przez wektor przemieszczen liniowych u;, wektor niezaleznych obrotow ¢, oraz tensor uogol-
nionych przemieszczen y;;. Punkt wyjscia stanowia wyniki otrzymane w pracy [1] dla przypadku
ogblnego. Model czastki uproszczonego osrodka stanowi nadal ukfad ztozony ze $srodka geo-
metrycznego i odpowiednich plaszczyzn przechodzaych przez ten $rodek. Plaszczyzny te oprocz
przemieszczen wraz ze srodkiem geometrycznym doznaja niezaleznych przemieszczen i odksztal--
cen. Nadal zakladamy, ze wzdluz krawedzi przecigcia nie moga si¢ one nawzajem przemieszczaé
wzgledem siebie. Dla omawianego modelu uproszczonego zakladamy dodatkowo, ze plaszczyzny
te nie moga si¢ wzgledem siebie obraca¢. Reprezentowana przez powyzszy model czastka uprosz-
czonego osrodka strukturalnego jest ukladem o 15 stopniach swobody. Dla osrodka ciggtego
ztozonego z takich czastek otrzymano 105 réwnan z odpowiednimi warunkami brzegowymi.
W skiad tego uktadu wchodzi 15 rownan ruchu, 45 rownan geometrycznych oraz 45 zwigzkow
fizycznych. Z powyzszego ukladu roéwnan mozemy w sposéb jednoznaczny wyznaczy¢é 105
niewiadomych statycznych i geometrycznych wystgpujacych w modelu uproszczonego o$rodka
strukturalnego.

IIpeameTom paccy)KOeHMH SIBJIAETCA CIUIOLUIHAS Cpefa, B KOTOPOH KpoMe CHJIOBBIX Hanps-—
YKeHHit p'’, MOMEHTHBIX HampsDKEHHH m'/, BLICTYNAOT HanpsUKEHHS BBICLIEro Iopsygxa b'*,
B 310if cpeme mepemellieHHs ONMCHIBAIOTCS BEKTOPOM JIMHEHHBIX IEpPEMELUEHHH I, BEKTO-
POM HE3aBHCHMBIX BPAICHMH @; H TEH30pOM 00OOLIEHHBIX nepemelnennii ¢ . Hcxomayro
TOUKY COCTaBJISIIOT Pe3yJIbTaThl MoJydeHHbIe B paGore [1] ayist obuwiero ciyuas. Mopens uac-
THLBI prOlHCHHOﬁ cpeabl COCTaBIISAET B ﬂﬂJILHCﬁHICM CHCTEMA CoCTosAlIasA M3 IéoMeTpHuec-
KOO IIEHTPAa H COOTBETCTBYIOLIMX IUIOCKOCTEH, NMPOXOAANIMX uepe3 3TOT LEHTP. OTH IJIoCc-
KOCTH, KPOME INepeMEIeHUH COBMECTHO C TeOMETPHUECKUM LIEHTPOM, MCHBITHIBAIOT HE3aBH--
CHMBbIe TepeMmellleHHs U medopmanuu. B manbHeifinem mpeamionoraeM, Uro BJAOJNb I'DaHH Ie-
PECEUEHHA OHM HE MOTYT B3aHMHO IIEPEMEINAThCA OTHOCHTENBHO ceba. Ilna obcy»kmaemoit
YNPOMIEHHOH MOJENH TIPeATOJaraeM TOTIOJHHUTENIBHO, YTO 3TH IUIOCKOCTH HE MOTYT OTHOCH-
TesIbHO cefs BpamatecA. [IpeacraBieHHas BBILIEYIIOMAHYTONH MOMJENBIO YaCTHIA YIIPOLIECHHOH
CTPYKTYPHO# Cpeabl ABJIACTCA CHCTEMOM ¢ 15 cremeHAmu cBoSombl. J[NA CIUIOLIHON Cpembl,
COCTOSILIEH H3 TAKHMX YaCTHI, NosydeHsl 105 ypaBHEHMi C COOTBETCTBYIOLIMMH I'PaHHYHBLIMH
ycioBHsAMHM. B cocTaB 3TOH CHCTEMBI BXOOHT 15 ypaBHeHHI ABIYKEHHA, 45 reOMETPHYECKHX
ypaBHeHMII H 45 (H3MUeCKNX COOTHOLNECHMI. 113 BRIIIEYNIOMAHYTOH CHCTEMBI YpaBHEHMI MO~
YKeM eQUHCTBEHHBIM oOpasom ompeaenuTb 105 CTaTHUYECKHX M IeOMETPHYECKHX HEH3BECTHDBIX,.
BBICTYNAIOIIMX B YNPOIIEHHOH MOJEIM CTPYKTYPHOH Cpensl.
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1. Generalized displacement tensors ¢;;, ¥

BEFORE passing to the presentation of simpler models of the medium, let us return to the
displacement tensors ¢;;, ;5 introduced in the paper [1]; all the notations and definitions
introduced in that paper remain valid. Let us start with tensor ¢;; by decomposing it int
the symmetric and antisymmetric parts. According to the definition,

Pt
Puap = ”2 S
1.1
Prun = (Puz%t .

All components of the tensor are expressed as sums of their symmetric and antisymmetric
parts, ¢;j = @,y +¢- In the matrix form

&"‘fﬂ P13+ Qs 1—

P11 > 2 5
+ +
Pupn = (P;:_Q_<P_1_z’ P22 i 2¢32 ,

P31+ @13 Part@as
2 ’ 2 ] ¢33

(1.2) -
0 P12— P21 P13— P31
- 2 H 2

Prip = ‘}”21;%2, 0 , ‘P23‘2"P32

P31— P13 P32~ P23 0
2 ? 2 ’

‘The antisymmetric part of tensor ¢;;; is a pseudo-tensor and may be represented in terms
of the vector @*:

(1.3) Peiy = &3 Prs

&% denoting the Ricci tensor. In a matrix notation
J g

0, @3, —(P2-
(1.4) Prig = | —Pas 0, 'S
(PZ) _¢P1, 0

Multiplying the expression (1.3) by the Ricci tensor and contraction of the indices yields
the formula inverse to (1.3),

1
(1.5) P = 5 &P

“This relation may also be derived directly by comparing the corresponding terms of matrices
{1.2) and (1.4).
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Passing to the physical interpretation of ¢,; let us observe that its antisymmetric part
expressed in terms of the vector ¢, represents the independent rotation of the particle
treated as a rigid body (Fig. 1). The individual components ¢,, ¢,, ¢; of ¢ describe the
rotations about the corresponding axes {y‘}.

4’4
e
93= 7 (Pr2- 921)

— L
T \:V o
Pz =% (931-¢13)

p

, ‘PF%(‘PES"P.?Z)_

Fic. 1.

The symmetric part ¢, ;, represents certain deformations of the particle. The components
Pan = Pi1s P22y S Pazs P33 = P33 lying at the principal diagonal of the matrix (1.2),
are the elongations measured along the axes y!, y?, 3. For instance, the elongation in the
direction of »? connected with the component ¢,, is shown in Fig. 4 of paper [1]. The

.. . 1
remaining terms of the matrix (1.2);: @2 = @@y, = 5 @12+ P21 Paus) = Pany =

1 . . -
=7 (P13+®31)s P2y = Qisay = % (23 +@3,) represent the corresponding distortions.
The distortion connected with the components @3, = @32y is shown in Fig. 2.

3
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FiG. 2.
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Let us return to the decomposition (1.1) of tensor ¢;; into the symmetric ¢;;, and
antisymmetric gg;; parts. The homogeneous part of the relative displacement u’, Eq. (2.8)
in [1], may be represented in the form

(1.6) u, = [Pra+panl v

The antisymmetric component in (1.6) is now replaced with ¢,, according to Eq. (1.3).
We obtain

(1.7) U, = " Pm¥ + Py -

First term of this expression may be considered as a rigid body rotation of the whole
particle, and the second one — as the strains shown in Fig. 4a in [1] and in Fig. 2.

Passing to the displacement tensor v, let us consider the tensor function QY(Y4)
defined in [1]; decompose it into the symmetric 2¢) and antisymmetric %1 parts,

(1.8) QY = QdhH 4 Oriy
Here
- 0id 4 Qi
Q) = =
. 0V _ Qi
i1 —
= 2

are the respective symmetric and antisymmetric parts of tensor 2%. In matrix notation
012 021 013 4 0317]
? 2 ’ 2
QZI;QIZ ’ 922 ’ 923_;'_932
Qﬂl _}_913 Qsz +Q23
2 ’ 2 ?
912_921 913_931_
2 ? 2

il 021_nt2 " 023 _ (32
3 3 2

Qll

Qudy —

Q33

(1.9) :

031_(013  32_ ()23
L 2, ’ 2 ’
The antisymmetric part 201 may be replaced with the vector £* in the following
manner :

0

0, &, -
(1.10) Quin— | -3 o0, o
@2, -0 0

or, in tensorial notation, with

(1.11) QU = 0Ok,
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The inverse formula takes the form
_ 1 .
(1.12) Qk = ? E’fiJQ”

Let us assume the tensor £2 to be of the form (2.10) of [1]. In such a case its symmetric
and antisymmetric parts shown in formula (1.9) are transformed and take the form

g OB LB rapt
2 ’ 2
o cxzﬂl+a152 azﬁs+a3‘32
i g > =P 2R2 st L U A
,_(2 2 3 o ﬁ 5 2 ?
P ey N
1.13) _ ? ?
( . = g 0(1[32—‘052}31 32133_&351~
] 2 2 2 ’
241 1p2 283 _ 342
i1 — Lﬁ;a ’i m&
Q 2 L; 0 H 2 2
az!gl_alﬁs fy_3ﬁ2—a2 3
__‘——-2 7 N 2 o 0

Vector Q° defined by Eq. (1.12) assumes now the form

(1.14) Q= — gk a'p

1
2
what follows also from a direct comparison of the corresponding terms of matrices (1.10)
and (1.13),.

The non-homogeneous part of the relative displacement u’’ given by Eq. (2.9) of paper

[1] may, in view of relation (1.8), be represented in the form

(115) ll;cl(YA, XK’ 1;) — y)ijk(-Q[U]'i'-Q(“)).

The first right-hand term is antisymmetric in the dummy indices i, j, and the second one
is symmetric. It follows that

(1.16) u (YA, X5, 1) = i @1+ 9y n 20D,
Pseudotensor yy;;;. may be expressed by means of a tensor of rank 2,
(1.17) Voo = & Puc-

The inverse formula holds also true,

1 ..
(1.18) Y = > EIHTPUJ.- .

Substitution of the right-hand sides of Eqs. (1.11) and (1.17) into the formula (1.16)
yields

(119) u;’(YA, XK, T) — Si}l'f}”m El{mém_l_w(“)kg(ij)_

12%
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Contraction with the Ricci tensors in the above formula leads to the result
(1.20) w, (Y4, X%, 7) = Wzk(2§,) i TP(U)J:-Q(”)-

Let us introduce the vector £ and define it as the vector product of vectors e and 3,
© = axP. In indicial notation

(1.21) fo P

On comparing the formulae (1.12) with (1.21) we conclude that Q% = 20, Substituting
this result into the Eq. (1.20) we obtain

(1.22) u (Y4, X5, 1) = pu(X*5, D' (V) +pa(X5, DQ2D(Y4).

The total displacement defined by Eq. (2.15) of paper [1] assumes, in view of Egs. (1.7)
and (1.22), the form

(1.23)  w(Y4, X5 2) = (X5, D)+ e (XX, DY (YY) + @ (XE, ©) ' (Y4
+ (X5, DY) + (X5, DRD(YH).

Let us now pass to the simplified model of a structural medium. In such a model it
will be assumed that the symmetric part ¢, of ¢;; and the symmetric (in indices i, j)
part of tensor v,y vanish, ¢qu; = wame = 0. Total displacement of the micro-element Y
of particle X expressed by Eq. (1.23) is simplified to the form

(1.24) we(Y4, X5, 7) = u(X%, 0)+ eupm(X¥, DY (Y*) +pu (XS, ) 2 (Y).

Vector u;, describes the rigid body displacement of the whole particle X; the rotation
vector ¢,, corresponds to the particle rotation about the axes passing through its geometric
center, and tensor i, represents its nonhomogeneous displacement. The first two right-
hand terms of the expression (1.24) describe the behaviour of the particle treated as a rigid
body; its strains are connected with tensor yy, only. To illustrate the character of these
strains let us assume the vectors @ and B defining the vector function £' of (1.21) to be
linear in the coordinates {y*} and to satisfy the relations (2.12) of paper [l].

Substitution of relations (2.12) [1] into the Eq. (1.21) makes it possible to calculate
the components of £'. We obtain

. y?y?
(1.25) [ A N
Ca)’l)’z_
where
(1.26) C; = E}jkajbk.

The non-homogeneous relative displacement u”’ is described by the third term of expression
(l '24)3

(1.27) uy (Y4, XX, 7) = p (X%, DQ'(Y4).

The physical character of displacements 3 connected with the components %,,, %,;, Y1,
of tensor ¢, under the assumption that the vector function 2' has the form (1.25), is
illustrated by Fig. 3. Displacements )" and 5 connected with the remaining components
of ¢ are of a similar character.
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The model of a particle of the simplified structural medium remains the same as in the
general case discussed in [1]. The simplification consists in the assumption that the planes
passing through the geometric center are not allowed to rotate with respect to each other.
However, they may be subject to independent warping, Warping of one of the planes
is shown in Fig. 8c of paper [1].

In addition to warping, each plane is subject to independent tangential displacements
(and deformations) as shown in Fig. 8b of paper [l].

Motion of the simplified structural medium is described by the tensor functions

U, = “k(Xx, ),
(1.28) @ = (X5, 7),
Vi = 'Ptk(Xx, 7).

Determination of all the 15 components of these functions determines the position of each
particle of the medium considered. From the dynamical point of view, each particle repre-
sents a system with 15 degrees of freedom.
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2. Equations of the simplified structural medium

The individual groups of the simplified medium result from the corresponding equa-
tions of the general model presented in [1], in which suitable simplifications discussed
in the preceding section must be introduced.

The geometric relations (2.20) of paper [1] are reduced to the form

Yij = Uja— &1} Prs
(2.1) %ij = Qi1 Yij»

Nkij = Yij, k-
Tensor #;, is derived from Eqgs. (2.20), [1] as the antisymmetric (in indices k, /) part of tensor
#;.1, use being made of the definition x;xy = &d%;; and the relations (1.3) and (1.18).
By introducing the definition %gipmmy = emiMiy and the relation (1.18) into the equation
(2.20); of paper [l], relation (2.1); is obtained.

In order to derive the equations of motion, the boundary conditions and the constitutive

relations, the generalized Hamilton principle formulated in [1] (Eq. (2.25)) must be used.
The procedure is analogous to that applied in the general case. It was extensively discussed

in the previous paper [1] and there is no need to return to the problem here.
Equations of motion of the simplified medium have the form

P+ = gif+ el +
22 m el p+ i = elylolit + el By + v,
bi.ﬂfi_*_mik_*_gjk — M.lil'k_i_gkily;j'q')t_i_#fii/');k.
A number of new notations have been introduced here. The first group,
U ¥ ou au

2.3 oy e = = = , P
@3 4 Y1y 0y Mk

defines the force stress tensors, couple stress tensors and higher order stress tensors, respec-
tively. U is, as before, the internal energy density, and it is assumed to be a function of the
strain tensors introduced in Eqgs. (2.1), U = U(y,;, %i;, 0;;x), representing the counterpart
of Egs. (2.25) in paper [1].

The second group contains, in addition to the definitions (2.32) of p, o, ¢ ([1]), the
following notations:

24 = 21) f Y Qedw, ut = % f Qdw, p¥ = 5 f Q' Qdw.

which may be termed the generalized densities of the medium.
The following symbols

= [Fod,

. 1 om
2.5 J = il f Erk—=
( ) h E{t:‘ 0w yfedw,
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1 =
gk = 5 f.Q’f"gdw

denote the densities of the generalized body forces.
The boundary conditions are reduced to the form
P”nl = P{n)s
(2.6) min, = ml,,,
b, = blk
where »; are the components of the outer normal n to the boundary bounded by the surface
s. The following notations are used in Eq. (2.6):

Plny = [ Plnydo,
2.7 My = €y fyil’fn)d‘f’
o
bl = [ bk, do.
g

The remaining notations have been explained in paper [1]. Equations (2.6) represent
the static boundary conditions expressed in terms of the force, couple and higher order
stress tensors.

The internal energy density U = U(yy;, %y, 1i) is assumed to be a function of strain
tensors. It may be expanded, as in the general case, into Taylor’s series in the neighbourhood
of the undeformed (natural) state (y{; = x; = 5 = 0). Making use of the definitions
(2.3) we obtain the following constitutive relations:

Pij - Aij“yk,+D“MM“+EU“'"7)“,",
(28) mlj — Dijklym_‘_cijklxkl+Fijk!m,',)“m’
bljk — El’fklmy“m+Fijklmx[m+Bijklmn1mﬂ’

Ak = (ﬁazU ) Dkt — ( a*u )
0, 0’

with the notations

ViV éy‘jaxm
. 02U . o*rU
(2.9) Eiikim _ (__a ) , cim _ ( 7) ’
V1, 0Mkim |o 0%;; 0% | o
. 92U .. o*Uu
Fuklm - (_N_ ) s BU“’" = ( ) .
%15 Mim o amfx@mmn )

The constitutive relations express the stress tensors in terms of the strain tensors. The
magnitudes A, B, C, D, E, F defined in Eq. (2.9) are the elasticity tensors of the medium.
In a medium in which each particle has a center of symmetry, tensors D, E, F vanish,
and the constitutive relations assume the form
Pl = Aty
(2.10) mH = Clkly,
bijk zoe Bljklmnm"m
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In the equations of motion (2.2) it should be assumed in such a case that ¢ = u' = v¥ = 0.

The simplified structural model is described by means of 105 equations: 15 equations
of motion (2.2), 45 geometric relations (2.1) and 45 physical relations (2.8) or (2.10).
These equations, together with the boundary conditions (2.6), allow for a unique determina-
tion of 105 unknown statical and geometrical parameters of the medium considered.

45 statical unknowns consist of 9 force stress components p, 9 couple stress compo-
nents m" and 27 higher order stress components b**. 60 geometrical unknowns are repre-
sented by 45 strain tensor components and 15 displacement components. The strain tensor
components may be divided into 9 components of y;;, 9 components #;; and 27 components
of the tensor 7, . The displacement tensor components consist of three vector components
u;, 3 vector components ¢;, and 9 tensor components ¥;;.

As in the general case discussed in [1], also here the equations of motions may be
expressed in terms of displacements. Stresses p*/, m" and bY* are eliminated from the
equations of motion (2.2) by means of the physical relations (2.8) or (2.10), and then the
geometric relations (2.1) are used to eliminate the strain tensors. The resulting 15 equations
represent the set of equations of motion containing 15 unknown components of the gene-
ralized displacement tensors u;, ¢;, ;. This problem has been discussed in detail in
paper [1].

The models of continuous media presented in this paper are rich in possible applica-
tions but rather complicated, since they involve a high number of unknown geometrical
and statical parameters. In many practical applications such complicated models are not
necessary; that is why a much simpler model of a medium called a bimoment medium
is used in some cases. In such a medium, besides the force and couple stresses, also the
socalled bimoment stresses are introduced. The geometrical magnitudes are represented
by linear displacement, unconstrained rotations, and, additionally, by independent warping
functions. The bimoment medium and its possible applications will be dealt with in a sepa-
rate paper.
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