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BRIEF NOTES 

An improved bound on the error in Reissner's theory of plates 

Z. RYCHTER (BIALYSTOK) 

THIS REPORT shows that the energy-norm error for solutions in Reissner's theory of plates is 
under special types of boundary conditions, proportional to the thickness cubed; normally 
the error is known [1] to be proportional to the thickness squared . 

1. Introduction 

NoRDGREN [1] has established the energy-norm error for solutions in Reissner's theory 
of plate bending to be proportional to the thickness squared. To compare the plate theory 
(approximate) solutions with the corresponding three-dimensional elasticity theory (exact) 
solutions, he employed the hypercircle theorem due to PRAGER and SYNGE [2] with specially 
constructed, from the plate theory displacements and moments, thickness distributions 
of the stresses and displacements. The boundary conditions of the elasticity problem were 
assumed to conform to these distributions, thus being "regular" in the sense defined by 
KOlTER [3]. Later BERDICHEVSKI [4] suggested that if the plate carries no face loads and 
no body forces, being under certain displacement boundary conditions, the error for 
Reissner's theory may be a quantity proportional to the thickness cubed. In this report 
the latter observation is proved to be valid not only for the regular displacement boundary 
conditions of [1] and [4] but also for certain regular stress boundary conditions resulting 
from a more elaborate than in [1] distribution of the stresses through the thickness. More 
precisely, we are able to prove that the relative energy-norm error is, under the indicated 
circumstances, a quantity of order O(h3 I L 3), where 2h is the thickness and L a characteristic 
wavelength of the deformation pattern. The analysis is restricted to isotropic homogeneous 
plates of constant thickness. 

2. Preliminary relations 

Let the three-dimensional stress fields a, a and a denote, respectively, the exact solution, 
a statically admissible solution and a kinematically admissible s~lution to a given three­
dimensional problem in the linear theory of elasticity, and let C[ ·] be a positive definite 
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homogeneous quadratic functional representing the stress energy. The bypercircle theorem 
asserts that [2] 

(2.1) 

thus enabling quantitative estimates of the difference between the exact (usually unknown) 
solution a and the sum of the two supposedly known solutions a and a. In view of Eq. 
(2.1), the relative error s for the approximate solution (a+a)/2 may be computed from 
(see [5]) 

(2.2) 

The space occupied by the plate is parametrized here by cylindrical coordinates (x'X, x 3 = 

= z), where xrx (ex = 1, 2) is an arbitrary set of curvilinear coordinates on the middle plane 
and z denotes the distance from that plane. 

For isotropic materials, the stress energy of an arbitrary stress field a reads 

h 

(2.3) C[a] = 2~ J J .f [(l+v)aja{-va:aj]dAdz (i,j = 1, 2, 3), 
A -h 

where E is Young's moduls, v is Poisson's ratio, A denotes the region occupied by the 
midplane and 2h is the constant thickness of the plate. The corresponding constitutive 

relations are 

(2.4) 

u being the displacement vector, aafJ the covariant components of the midplane metric 
tensor, the subscripts preceded by a comma and a vertical stroke denote, respectively, 
partial and surface covariant differentiation, and the indices placed in parentheses mean 
symmetrization. 

Assuming zero body forces, the equilibrium equations read 

(2.5) 

We also assume that the faces of the plate carry no load, i.e . 

. {2.6) 

whereas on the cylindrical edge surface S, with the unit vector ni normal to S, the boun4ary 
conditions are "regular" (see [3]), that is have the form 

(2.7) 
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ui being a kinematically admissible displacement field which, by definition, produces via 
the constitutive equations (2.4) the stress field a. 

The basic relations of Reissner's theory are adopted here in the form corresponding 
to that of [1]. For future use we record the equilibrium equations 

(2.8) Mg!p-Qee = 0, Qeelee = 0, 

which are homogeneous due to the absence of face and body forces, the constitutive rela- ~ 

tions 

Mrxp= 
2Eh3 

30
_ 112) [(1-v) P<ee!fJ> +vaeepP-''1.,.], 

5Eh 
6(1 +v) (Pee+ W,ee), 

(2.9) 

Qee= 

and the boundary conditions along the edge curve C of the midplane 

(2.10) 
MeepnP = M:_pnP, Qeenee = Q: nrx on Ca, 

w = w*, Pee = P: on Cu, 

the starred quantities being prescribed. In the foregoing Pee, w, Meep and Qee are resultant 
rotations of normals to the midplane, resultant lateral deflection, moments and transverse 
shearing forces, related to the three-dimensional displacements and stresses as follows: 

(2.11) 

h 

Pee= 2~3 J Ueezdz, 
-h 

h 

Meep = J (Jeepzdz, 
-h 

h 

Qcx = I (Jcx3 dz. 
-h 

In view of the relations (2.11), the regular boundary conditions (2. 7) of the three­
dimensional elasticity problem and the reduced boundary conditions (2.1 0) of the corres­
ponding two-dimensional plate problem are • related by 

(2.12) 

h 

f - P d M* f3 (Jcxp n z z = cx{J n ' 
-h 

h 

h 

I ii needz = Q*nee ee3 ee 
-h 

h 

_ 3 f" d - R* 2h3 Ucx.Z Z - Pcx' 

-h 
! J (I - ~: ) U3 dz = w* on c •. 

-h 

3. Error estimates 

Suppose that we know the quantities w, Pee, Mcx.p and Qcx. satisfying Eqs. (2.8)-(2.10) 
of Reissner's theory. This solution may be concisely characterized by the absolute maximum 
of the moments M and a characteristic wavelength L of the deformation pattern as follows: 

(3.1) 
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From this two-dimensional solution we shall construct three-dimensional fields u, a and a, 
so that the relative error e defined by Eq. (2.2) is of the order O(h3 fL 3). 

We start with the displacement field of [I] 

Ucx = zf3cx + (z3
-

3
5 h2z)fa., 

(3.2) 

u3 = w+(z2 -h2 /5)g, 

which clearly conforms to Eqs. (2.I2)J,4 • The unknown functions fcx(x;..) and g(.0) wil 

be chosen so that 

(3.3) 

these stresses being related to the displacements (3.2) through the constitutive equations 
(2.4). This is achieved by setting 

(3.4) 
v 

g = - 2(I- v) pcxjcx. 

Indeed, introducing Eqs. (3.2) into Eq. (2.4)2 and then using Eqs. (3.4) and (2.9h, we 

obtain the equality (3.3) 1 • Similarly, substitution of the relations (3.2) into Eq. (2.4h 
indicates that Eq. (3.3h is true provided that 

(3.5) Jcxla. = 0. 

From Eqs. (3.4) we have 

(3.6) Joel~ = I +v Qocl v {3J..Icx 
~ - 2Eh3 ex+ 6(1 -v) J..oc• 

the first term in the right side being zero by Eq. (2.8)z; the second term is seen to vanish 

after introduction of Eq. (2.8) 1 into Eq. (2.8)2 and substitution of Eq: (2.9)1 for Ma.p· 
With Eqs. (3.2)1 , (3.3)2 , (2.9) 1 and (3.5), Eq. (2.4) 1 gives 

(3.7) A 3z M .. E ( 3 3 h2 ) ., 
aa.p = 2h3 a.p+ I +v z -5 z J<a.lfJ> 

and so we know all the components of a. 
A sufficiently close to a statically admissible stress field a is 

(3.8) u., = :h ( 1- ~:) Q.- 1 !. ( ~ - to h2
z

2 + ~~).I(. I~,, 
(133 = 0. 

It is obtained by starting from Eq. (3.8) 1 and integrating successively the equations of 
equilibrium (2.5) with Eqs. (3.7), (2.8) and (3.5), under the boundary conditions (2.6). 

Evidently, the expressions (3.8)1 , 2 conform to the boundary relations (2. I2) 1 , 2 • 

Comparison between Eqs. (3.8) and (3.3) gives , 

(3.9) 
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Now from Eq. (2.2) we derive with Eqs. (2.3), (3.9) and (3. 7) our final error estimate 
for the solutions in Reissner's theory: 

(3.10) 

Recall that this result is valid under no body forces and face loads. If a lateral load 
on the faces is present, the corresponding error is of the relative order O(h2 fL 2) [1]. For 
irregular boundary conditions, not conforming to the relations (2. 7), the error may be 
still greater on account of the boundary effects. 
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