Henryk TOMASZEWSKI INSTYTUT TECHNOLOGII MATERIAŁÓW ELEKTRONICZNYCH ul. Wólczyńska 133, 01-919 Warszawa

Wpływ udziału rozproszonej fazy metalicznej na własności termomechaniczne tworzywa korundowego

1. WPROWADZENIE

Podstawową wadą tworzyw ceramicznych, w tym również korundowych, ograniczającą ich zastosowanie jako materiałów konstrukcyjnych, jest niska odporność na pękanie (kruchość). W celu poprawienia tej cechy, wykorzystuje się znaną w układach metalowych technikę dyspersji cząstek "drugiej" fazy, metalicznej lub niemetalicznej [1-7]. Obserwowany wzrost pracy pękania w układach wzmacnianych dyspersyjnie jest związany zwykle z oddziaływaniem frontu spękania z "drugą" fazą, zaś jako mechanizmy absorbujące energię wymienia się: stępienie spękania, odchylenie spękania i wydłużenie frontu spękania [8].

Innym mechanizmem, który również może podwyższać pracę pękania, jest oddziaływanie frontu spękania z istniejącymi już w tworzywie mikrospękaniami [9-11]. Najbezpieczniejszą metodą tworzenia kontrolowanych mikrospękań jest wprowadzenie ziarn "drugiej" fazy o znacznej różnicy współczynników rozszerzalności cieplnej w stosunku do materiału matrycy. W czasie studzenia od temperatury spiekania do temperatury otoczenia, w tak skomponowanym materiale, powstałe naprężenia mogą powodować pękanie matrycy. Naprężenia rozciągające, jakim poddawana jest matryca wokół sferycznych ziarn o promieniu R są dane wyrażeniem [12]:

$$\mathcal{F}_{t} = \frac{(\alpha_{m} - \alpha_{d}) \cdot (\mathbf{I}_{1} - \mathbf{I}_{0}) \cdot (\mathbf{R/r})^{2}}{2 \left[(1 + \vartheta_{m}): 2 \mathbf{E}_{m} + (1 - 2\vartheta_{d}): \mathbf{E}_{d}\right]}$$
(1)

gdzie: $\alpha_{m,d}$ ($\alpha_m > \alpha_d$), $\gamma_{m,d}$ i $E_{m,d}$ są odpowiednio współczynnikami rozszerzalności cieplnej, współczynnikami Poissona i modułami Younga dla matrycy i ziarn fazy zdyspergowanej, T_1 jest temperaturą, poniżej której naprężenia nie są relaksowane (~1273 K), zaś T_0 jest temperaturą otoczenia, a r jest odległością od centrum ziarna fazy zdyspergowanej.

Chociaż maksimum naprężeń rozciągających jest niezależne od wymiarów ziaren fazy zdyspergowanej, spękania są obserwowane tylko w sąsiedztwie większych ziarn [13, 14], a zatem musi istnieć krytyczna wielkość ziarn D_c, poniżej której spękania się nie tworzą.

W oparciu o równowagę energetyczną, Lange [5] wyprowadził zależność dla krytycznej wielkości ziarn D_:

$$D_{r} \ge d/6 + 2$$

gdzie: c – stała dla danej pary materiałów matrycy i ziarn fazy zdyspergowanej, ${\cal O}_+$ – wielkość naprężeń rozciągających w matrycy.

Biorąc powyższe pod uwagę, z racji znacznej różnicy współczynników rozszerzalności cieplnej ($\alpha_{Al_2O_3} = 8.0 \times 10^{-6} \cdot C^{-1}$, $\alpha_{MO} = 5.1 \times 10^{-6} \cdot C^{-1}$ [15], wyraźnego podwyższenia odporności na pękanie tworzywa korundowego należałoby oczekiwać w wyniku wprowadzenia fazy metalicznej w postaci proszku molibdenu. Zbadaniu wpływu udziału tegoż proszku na własności termomechaniczne tworzywa korundowego i ocenie rzeczywistych mechanizmów wzmacniania poświecone zostało niniejsze opracowanie.

2. SPOSÓB PRZYGOTOWANIA PRÓBEK I PRZEPROWADZENIA BADAŃ

Do badań wytypowano tworzywo korundowe o następującym składzie chemicznym:

tlenek	glinu	-	99.55%	wag.	
tlenek	magnezu	-	0.20%	wag.	
tlenek	itru	-	0.25%	wag.	

Podstawowym składnikiem omawianego tworzywa był ałunowy tlenek glinu produkcji Zakładu nr 4 CNPME w Skawinie, o czystości 4N i średnim uziarnieniu poniżej 0,5 µm. Pozostałe dwa składniki były czystości: cz.d.a.

Składniki wyjściowego tworzywa korundowego ujednoradniano przez mieszanie w wodzie destylowanej w młynku kulowym przez okres 48 h, po czym suszono do wilgotności równowagowej.

Zestawy tworzywa korundowego z proszkiem molibdenu (udziały wagowe 0-50%) o średnim uziarnieniu 1,6 µm (prod. Starck, RFN) przygotowywano przez mieszanie w młynku kulowym przez 48 h w czterochlorku węgla. Rolę plastyfikatora spełniał w tym przypadku glikol etylenowy podawany do zestawów w operacji mieszania w ilości 5% wag.

Ujednorodnione zestawy suszono w temperaturze 313 K, po czym granulowano na sicie 1,5 mm, a następnie formowano próbki do badań przez prasowanie pod ciśnieniem 140 MPa. Wypraski suszono w temperaturze 473 K (przyrost temperatury 40 K/h) w celu usunięcia plastyfikatora i wypalano wstępnie w piecu tunelowym typu MOH 6/2 w atmosferze wodoru w temperaturze 1423 K. Wypalanie końcówek próbek przeprowadzano w piecu próżniowym Balzers typu MOV-3 w temperaturze 1973 K.

Krytyczny współczynnik intensywności naprężeń K_{IC} oznaczano zgodnie z metodyką zaproponowaną przez Evansa [16] przy wykorzystaniu próbek o konfiguracji opisanej wcześniej [17] i maszyny wytrzymałościowej Instron model TTDM przy prędkości obciążania 0,1 mm/min i odległości podpór 36 mm.

Wytrzymałość na zginanie badanych zestawów oznaczano na beleczkach o wymiarach 5x5x50 mm przy wykorzystaniu ww. maszyny wytrzymałościowej, stosując tę samą prędkość obciążania i odległość podpór.

Oznaczanie ścieralności wg Mackensena przeprowadzono za pomocą dmuchawy Mackensena

http://rcin.org.pl

39

typu WWBW-2, przez działanie strumieniem węglika krzemu o uziarnieniu 500-630 μm pod ciśnieniem 1,5 atm, stosując komorę o pojemności 28 cm³. Pomiar wykonano w dwojaki sposób: dmuchając jeden raz i trzy razy w to samo miejsce. Miarą ścieralności była głębokość wyżłobienia powstałego w badanym materiale.

Moduł sprężystości wzdłużnej E badanych zestawów oznaczono przez pomiar częstotliwości drgań wzbudzanych zewnętrznie w płytkach o wymiarach 30x50x4 mm przy użyciu aparatu Grindo-Sonic.

W celu oceny odporności badanych zestawów na wstrząsy cieplne poddano je (zgodnie z metodyką zaproponowaną przez Hasselmana [19] badaniom zmian wytrzymałości w funkcji intensywności wstrząsu cieplnego. W tym celu beleczki o wymiarach 5x5x50 mm podgrzewano w piecu rurowym do temperatury T_w leżącej w zakresie 473-873 K, a następnie po półgodzinnym przetrzymaniu wrzucano do naczynia z wrzącą wodą. Próbki dalej studzono w wodzie, suszono, a następnie oznaczano ich wytrzymałość na zginanie. Wartość intensywności wstrząsu cieplnego \varDelta T wyliczano ze wzoru(2):

$$= T_{\rm w} - 373$$
 (2)

Wyniki oznaczeń przedstawiono w postaci wykresów $R_{zo} = f(\Delta T)$.

Ocenę rozkładu wielkości ziarn składników badanych tworzyw przeprowadzono za pomocą mikroskopu Quantimet-720, ze zgładów poddanych trawieniu termicznemu w temperaturze 1673 K w piecu próżniowym Balzers MOV-3. Za pomocą tego samego mikroskopu dokonano oceny rozkładu wielkości i gęstości występowania mikrospękań.

Wychodząc z założenia, że pomiędzy prędkością rozwoju pęknięć podkrytycznych v w materiałach ceramicznych, a współczynnikiem K_T istnieje zależność potęgowa (3):

$$V = A K_{I}^{n}$$
(3)

wartości parametrów propagacji tychże pęknięć: A i n, dla badanych zestawów określono metodą pomiarów wytrzymałości na zginanie trójpunktowe w funkcji szybkości obciążania belek o wymiarach 5x5x50 mm. W tym celu zastosowano pięć różnych prędkości przesuwu głowicy maszyny: 0,01; 0,1; 1; 10; 100 mm/min. Liczność belek dla każdej prędkości przesuwu głowicy wynosiła 25 sztuk. Do wyliczenia ww. parametrów zastosowano metodykę opisaną przez Bonieckiego |18|.

3. WYNIKI BADAŃ I DYSKUSJA

Jak wynika z przedstawionych na wstępie założeń, wprowadzeniu do tworzywa korundowego proszku molibdenowego winno towarzyszyć pojawienie się w matrycy korundowej naprężeń, których źródłem jest różnica współczynników rozszerzalności cieplnej obu składników tworzywa. Wielkość tych naprężeń wyliczona ze wzoru Selsinga (1), w oparciu o następujące wartości stałych materiałowych matrycy i fazy rozproszonej: $\alpha_{Al_2O_3} = 8 \times 10^{-6} \, {}_{\circ} \, {}_{O_1}^{-1}$, $\alpha_{M_0} = 5.1 \times 10^{-6} \, {}_{\circ} \, {}_{C_1}^{-1}$, $E_{AL_2O_3} = 390 \, {}_{N/mm^2}$, $E_{M_0} = 324.8 \, {}_{N/mm^2}$, $v_{Al_2O_3} = 0,22$, $v_{M_0} = 0,291$, wynosi 498 MPa, a zatem wyraźnie przekracza wytrzyma-

łość badanych kompozytów (rys. 1) i winna sprzyjać pojawianiu się w matrycy korundowej mikrospękań. Obserwacja zgładów mikroskopowych badanych tworzyw (patrz tab. 1) wskazuje jednakże, iż z udziałem fazy metalicznej maleje średnia długość obecnych w nich mikrospękań, a także spada gęstość ich występowania. W przypadku większych udziałów molibdenu (35% wag. i 50% wag.)wręcz tych mikrospękań nie obserwuje się.

Obserwacje powyższe wskazywałyby więc, iż wielkości rzeczywiste ziarn molibdenowych zawartych w tworzywach korundowych, zgodnie z ogólnymi sugestiami Lange [⁵], pozostają poniżej wielkości krytycznej D_c. Wartości średnich wielkości ziarn molibdenowych w funkcji udziału tego składnika w tworzywach korundowych zestawiono w tab. 2.

Jak wynika z przeprowadzonych badań (rys. 1), wprowadzenie proszku molibdenowego do tworzywa korundowego podwyższa istotnie jego odporność na pękanie. Współczynnik intensywności naprężeń K_{IC} tworzywa zawierającego 50% wag. molibdenu osiąga wartość 5,248 MN/m^{3/2} w stosunku do wartości 3,43 MN/m^{3/2} dla czystej matrycy. Podobne zmiany dotyczą ścieralności. Ścieralność tworzywa z udziałem molibdenu jest ok. 50% niższa, aniżeli korundowej matrycy bez udziału tego dodatku.

Tab. 1. Długość i gęstość występowania mikrospękań w funkcji zawartości molibdenu

Zawartość molibdenu % wag. Parametry mikrostruktury	0	10	15	20	35	50
Średnia długość mikrospękania, I, µm	22,8+7,1	9,8 <u>+</u> 8,3	8,6+7,9	3,2+2,4	nie zaobserw	owano
Gęstość występowania mikrospękań, N, cm-2	80,5	84,0	43,0	17,0	-	-

lab.	2.	Rozkład	wielkości	ziarn	Mo w	zestawach	tworzywa	korundowego
------	----	---------	-----------	-------	------	-----------	----------	-------------

Udział Mo, % wag.					
Przedział wielkości ziero wa	10	15	20	35	50
wichosel ziałi, pm					
1	2	3	4	5	6
0,6 - 1,3	25,0	23,0	-	-	-
1,3 - 2,9	39,9	41,5	28,8	28,0	25,9
2,9 - 4,5	17,4	17,1	30,0	28,0	22,1
4,5 - 6,1	8,8	7,2	16,5	15,7	13,5
6,1 - 7,7	4,2	3,8	8,7	7,8	10,7
7,7 - 9,3	2,5	2,7	4,6	5,0	6,2
9,3 - 10,9	1,0	1,5	3,7	3,4	5,1
10,9 - 12,5	0,6	1,5	2,0	2,6	3,7
12,5 - 14,1	0,4	0,5	1,5	2,2	2,4
14,1 - 15,7	0,2	0,6	1,2	1,5	2,2
15,7 - 17,3		0,4	0,7	1.2	1.3
17,3 - 18,9		0,2	0,9	1,0	1.6
18,9 - 20,5			0,3	0.5	0.9
, 20,5 - 22,1			0,4	0,5	0,9

http://rcin.org.pl

cd. tab. 2

1	2	3	4	5	6
22,1 - 23,7			0,2	0,6	0,7
23,7 - 25,3			0,2	0,3	0,4
25,3 - 26,9			0,1	0,4	0,3
26,9 - 28,5			0,1	0,2	0,5
28,5 - 30,1			0,1	0,3	0,3
30,1 - 31,7				0,1	0,2
31,7 - 33,3				0,1	0,2
33,3 - 34,9			1. Contract (1. Contract)	0,2	0,3
34,9 - 36,5		Lose March		0,1	0,1
36,5 - 38,1				0,1	0,2
38,1 - 39,7				0,1	0,1
powyżej 39,7		2.91895397			0,2
Średnia wielkość ziarn Mo, µm	2,98	3,45	5,16	5,90	6,38

Na podstawie wykonanych obserwacji mikroskopowych, jednoznacznie można stwierdzić, iż obserwowany wzrost odporności na pękanie tworzywa korundowego z udziałem fazy metalicznej nie jest, jak zakładano, wynikiem oddziaływania pola naprężeń frontu makrospękania z obecnymi w tworzywie mikrospękaniami. A zatem może on być jedynie wynikiem oddziaływania tegoż pola naprężeń z fazą metaliczną, jako fazą o niższym module sprężystości i istotnie wyższej plastyczności aniżeli krucha korundowa matryca.

Potwierdzeniem powyższej hipotezy są wyniki oznaczania prędkości rozwoju pęknięć podkrytycznych w badanych tworzywach (rys. 2, tab. 3).

Tab. 3. Parametry propagacji pęknięć podkrytycznych tworzywa korundowego w funkcji udziału molibdenu

Udział molibdenu % wag. Parametry propagacji pęknięć podkryt.	0	10	20	35	50
log A	-21,2291	-23,8126	-22,5477	-25,6415	-44,5713
n	32,21	28,32	29,72	33,99	57,48

Jak widać, prędkość ta wyraźnie maleje z udziałem molibdenu, szczególnie zaś niska jest dla 50% wag. udziału tego dodatku, co potwierdza rolę molibdenu jako fazy "wygaszającej" naprężenia pojawiające się w tak skomponowanych kompozytach.

Kolejnym potwierdzeniem postawionej hipotezy są wyniki badania odporności na wstrząsy cieplne tworzywa korundowego (rys. 3).

Jak łatwo zauważyć, Δ T_c tworzywa korundowego od wartości równej 150K dla czystej matrycy wzrasta do 400K dla tworzywa z 50% wag. udziałem molibdenu. W przypadku odporności na wstrząsy cieplne nie bez znaczenia pozostaje również różnica przewodności cieplnej obu składników omawianych tworzyw (przew. cieplne Al₂0₃ = 25,1 W/m K, przewodnictwo cieplne Mo = 138 W/m K).

tu molibdenu

ności SM i modułu Younga E tworzywa korundowego z wielkością udzia-

4. WNIOSKI

Jak wykazały badania, wprowadzenie fazy metalicznej w postaci proszku molibdenu do tworzywa korundowego prowadzi do istotnego podwyższenia jego odporności na pękanie i ścieranie. Jest ono najprawdopodobniej wynikiem oddziaływania pola naprężeń makrospękania z fazą o niższym module Younga i wyższej plastyczności aniżeli korundowa matryca, na co wskazują pomiary prędkości propagacji pęknięć podkrytycznych oraz odporności na wstrząsy cieplne. Jak stwierdzono również, molibden spełnia rolę czynnika ograniczającego wielkość i ilość obecnych w tworzywie mikrospękań, co jednoznacznie wyklucza przypisanie obserwowanego wzrostu K_{IC} oddziaływaniu frontu spękania z istniejącymi mikrospękaniami.

LITERATURA

- [1] Kelly A., Nicholson R.B.: Progr. Mat. Science, 1963, 10, 3, 1
- [2] Ansell G.G.: Proceedings of the Second Bolton Landing, Conference on Oxide Dispersion Strengthening, Gordon and Breach, New York, 1968, 253
- [3] Lange F.F.: Effect of Microstructure on Strength of Si₃N₄-SiC Composite System, J. Amer. Ceram. Soc., 1973, 56, 9, 445
- [4] Hing P., Groves C.W.: Strength and Fracture Toughness of Polycrystalline MgO Containing Metallic Particles and Fibres, J. Mat. Science, 1972, 7, 4, 427
- [5] Lange F.F.: Fracture Energy and Strength Behaviour of a Sodium Borosilicate Glass-Al₂0₃ Composite System, J. Amer. Ceram. Soc., 1971, 54, 12, 614
- [6] Hugh C.O., Whalen T.J., Humenik M.: Dispersion Strengthened Aluminium Oxide, J. Amer. Ceram. Soc., 1966, 49, 9, 486
- [7] Simpson L.A., Wasylyshyn A.: Fracture Energy of Al₂D₃ Containing Mo Fibres, J. Amer. Ceram. Soc., 1976, 54, 1, 56
- [8] Lange F.F.: Interaction of a Crack Front with Second Phase Dispersion, Phil. Mag., 1970, 22, 179, 983
- [9] Rossi R.C.: Thermal-Shock-Resistant Ceramic Composites, Amer. Ceram. Soc. Bull., 1969, 48, 7, 736
- [10] Garvie R.C., Nicholson P.S.: Structure and Thermomechanical Properties of Partially Stabilized Zirconia in the CaO-ZrO₂ System, J. Amer. Ceram. Soc., 1972, 75, 3, 152
- [11] Green D.J., Nicholson P.S., Enburry J.D.: Fracture Toughness of a Partially Stabilized ZrO₂ in the CaO-ZrO₂ System, J. Amer. Ceram. Soc., 1973, 56, 12, 619
- [12] Selsing J.: Internal Stresses In Ceramics, J. Amer. Ceram. Soc., 1961, 44, 8, 418
- [13] Binns D.B.: Science of Ceramics, vol. 1, ed. G.H. Stewart Academic Press Inc., New York, 1962, 315
- [14] Davidge R.W., Green T.J.: Strength of Two Phase Ceramics Glass Materials, J. Mat. Science, 1968, 3, 6, 629
- [15] Chance D.A., Wilcox D.L.: Metal-Ceramic Constraints for Multilayer Electric Packages, Proc. of the IEEE, 1971, 50, 10, 1455
- [16] Evans A.G.: Fracture Mechanics Determinations, in Fracture Mechanics of Ceramics, vol. 1, Concept, Flaws and Fractography, ed. R.C. Bradt, D.P.H. Hasselman, F.F. Lange, Plenum Press, New York, London 1973
- [17] Tomaszewski H.: Zjawiska wzmacniania w układzie Al₂O₃-ZrO₂, Inżynieria Materiałowa, 1986,
 2, 31, 41
- [18] Boniecki M.: Rozwój pęknięć podkrytycznych w tworzywie Al₂O₃-15% ZrO₂ pod wpływem cyklicznych zmian temperatury, Archiwum Nauki o Materiałach, 1988, 9, 3, 195
- [19] Hasselman D.P.H.: Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics, J. Amer. Ceram. Soc., 1969, 52, 11, 600