FORMOWANIE WARSTWY FTALOCYJANINU MIEDZI DO SENSORÓW CZUŁYCH NA NO₂

Judyta Hechner

W artykule zostały omówione warunki formowania warstwy chemoczułej z ftalocyjaninu miedzi oraz wzajemne relacje pomiędzy parametrami osadzania, strukturą warstw i procesem detekcji.

1.WPROWADZENIE

Głównym źródłem zanieczyszczeń środowiska są procesy przetwarzania surowców energetycznych oraz motoryzacja. Towarzyszy im wydzielanie się toksycznych produktów gazowych takich jak tlenki siarki i tlenki azotu. Tlenki azotu, a w szczególności dwutlenek odgrywają też znaczącą rolę w procesie tworzenia ozonu w troposferze. W tym kontekście czujniki wykrywające NO₂ wzbudzają szerokie zainteresowanie wielu ośrodków badawczych na świecie.

W ostatnich latach obserwuje się rozwój czujników wykorzystujących akustyczne fale powierzchniowe. Akustyczny czujnik chemiczny oparty jest na dwóch podstawowych elementach: przetworniku (który zmienia wejściowy sygnał fizyczny lub chemiczny na wyjściowy akustyczny) oraz warstwie chemicznie czułej na własności analizowanego ośrodka.

Elementem przetwornikowym są linie opóźniające na podłożu piezoelektrycznym. Każda linia opóźniająca składa się z dwóch przetworników międzypalczastych (nadajnika i odbiornika). Ideowy schemat czujnika przedstawiony jest na rys. 1. Zawiera on dwie identyczne linie opóźniające, z których jedna z osadzoną między nadajnikiem, a odbiornikiem warstwą chemoczułą jest właściwym elementem pomiarowym, druga jest linią odniesienia, służącą do kompensacji pasożytniczych wpływów temperatury, ciśnienia, itp.

Różnica częstotliwości sygnałów generowanych w obydwu liniach jest miarą zmian zachodzących na powierzchni warstwy. Każdy parametr, który powoduje zmianę właściwości powierzchniowych warstwy wpływających na zmianę prędkości fali,

Instytut Technologii Materiałów Elektronicznych ul. Wólczyńska 133, 01-919 Warszawa

może być wykorzystany w czujnikach z falą powierzchniową.

Zmiana szybkości rozchodzenia się fali akustycznej jest wywoływana głównie następującymi efektami: zmianą masy warstwy, zmianą jej gęstości, elastyczności oraz przewodnictwa elektrycznego.

Możliwość wykorzystania częstotliwościowej odpowiedzi czujnika, więcej niż jednego zmieniającego się parametru zwiększa czułość i selektywność detekcji.

Właściwości wykrywanej substancji determinują specyfikę materiałów wyjściowych do warstw chemicznie czułych. Dwutlenek azotu jest gazem silnie oksydującym, czyli elektronoakceptorowym, w związku z tym korzystnym jest stosowanie warstw, które zapewniają jednoczesne sprzężenie akustyczno-masowe i akustycznoelektryczne z podłożem piezoelektrycznym. Substancjami wyjściowymi takich warstw mogą być półprzewodnikowe materiały organiczne, między innymi ftalocyjaniny, które są tradycyjnie stosowane jako barwniki.

W niniejszym artykule zostały omówione warunki formowania warstwy chemoczułej z ftalocyjaninu miedzi oraz wzajemne relacje pomiędzy parametrami osadzania, strukturą warstw i przebiegiem detekcji. Powyższa tematyka nie była dotychczas opisana w międzynarodowej prasie fachowej, natomiast liczne są publikacje dotyczące wykrywania silnie utleniających gazów z zastosowaniem ftalocyjaninu miedzi PcCu.

2. CHARAKTER ODDZIAŁYWANIA

Jednym z najważniejszych czynników decydujących o efektywności działania chemicznego sensora jest charakter oddziaływania warstwy chemicznie czułej z wykrywaną substancją. Ponieważ czujniki muszą pracować odwracalnie w detekcji gazów, par, jak również cieczy, wykorzystuje się przede wszystkim zjawisko adsorpcji. Adsorpcja polega na powierzchniowym oddziaływaniu pomiędzy molekułami lub atomami i zależy od polaryzacji, rozmiarów i struktury sorbentów. W przypadku adsorpcji fizycznej, czyli międzycząsteczkowego oddziaływania typu van der Waalsa siły wiązania są rzędu 0-10 kJ/mol. Siły wiązania atomowego, charakterystycznego dla chemisorpcji mają wartość 40-300 kJ/mol i polegają na uwspólnieniu pary elektronów pochodzących od cząstek reagujących. Natomiast wiązanie koordynacyjne jest wiązaniem pośrednim pomiędzy tym, które występuje w adsorpcji fizycznej i chemicznej. Polega ono na tym, że dublet elektronowy pochodzi od jednego reagenta, a drugi dostarcza tylko luki elektronowej. Siła wiązania jest rzędu 10-40 kJ/mol.

Chemisorpcja oraz koordynacja zapewniają wyższą selektywność detekcji, przy czym desorpcja zachodzi łatwiej w przypadku koordynacji. W związku z powyższym wydaje się celowym wykorzystanie mechanizmu wiązania koordynacyjnego w detekcji substancji chemicznych.

Ftalocyjaniny, związki organiczne o budowie przedstawionej na rys. 2 i 3, wykazują zdolność koordynacyjnego wiązania molekuł gazów elektrono-akceptorowych.

Rys. 2. Ftalocyjaniny.

Rys. 3. Metaloftalocyjaniny.

Dwa centralne atomy wodoru w cząsteczce mogą być zastąpione metalem, dając metaloftalocyjaniny, oznaczane w dalszym tekście jako MePc (Me=Pb,Cu,Fe,Zn...).

Szesnaście peryferyjnych atomów wodoru w czterech pierścieniach benzenowych może być zastąpionych lub wiązać się koordynacyjnie z innymi grupami organicznymi i nieorganicznymi.

Z danych literaturowych wiadomo, że ftalocyjaniny są półprzewodnikami typu p [1] i że przewodnictwo ich nie jest samoistne, a adsorpcja elektrono-akceptorowych gazów wywołuje generowanie ładunków w płytkich poziomach akceptorowych. Energia aktywacji ftalocyjaninów metalicznych jest prawie niezależna od wbudowanego metalu i wynosi około 2 eV. Obecność zaś w warstwie zaadsorbowanych domieszek

obniża energię aktywacji. Stwierdzono, że obecność pary wodnej w analizowanym środowisku nie tylko nie przeszkadza, ale działa na warstwe stabilizująco i katalitycznie [2]. Katalityczne działanie cząstek pary wodnej, zgodnie z próbą wyjaśnienia tego zjawiska przez niektórych naukowców [1,3], polega na powstawaniu kompleksu OH/O2- i natychmiastowej fizykosorpcji grupy OH oraz chemisorpcji O2-. Ponieważ zewnętrzna powierzchnia filmu PcMe jest zajęta przez grupę OH, tlen zredukowany do O₂- i pozbawiony zdolności utleniających jest chemoadsorbowany do głębokich warstw pokrycia. Obecność w warstwie zaadsorbowanego O2- obniża energię aktywacji, aż do 0,05 eV. Desorpcja tlenu, zgodnie z badaniami opisanymi w artykule [3], zachodzi w obszarze temperatur 127°÷167°C. Jest to zakres, w którym można wykrywać tlen, gdyż zachodzą odwracalne zmiany wzbogacania lub zubożenia masy wraz ze zmianami ciśnienia parcjalnego O2. Detekcję NO2 należy więc prowadzić w temperaturach poniżej 127°C lub powyżej 167°C. W przeciwieństwie do O2, adsorpcja NO, jest powierzchniowa. Cząstki, których masa molowa jest większa od masy molowej OH, takie jak NO2, wypierają je i zajmują ich miejsce, gdyż siły van der Waalsa wzrastają ze wzrostem liczby elektronów w cząsteczce.

Efekt oddziaływania ftalocyjaninu z dwutlenkiem azotu ilustruje równanie 1.

Fizykosorpcja Ruch ładunku Delokalizacja ładunku Gaz + PcCu \leftrightarrow GPcCu \leftrightarrow G⁻PcCu⁺ \leftrightarrow G⁻PcCu + dziury (1) dyfuzja ECT Ed

G - cząsteczki gazu adsorbujące się na powierzchni warstwy PcCu;

- G zjonizowane cząsteczki gazu;
- ECT energia transferu ładunków ;
- ED energia potrzebna do uwolnienia ładunku.

Fizykosorpcja i dyfuzja połączona z koordynacyjnym oddziaływaniem cząsteczek PcMe z molekułami silnie utleniającego gazu (NO_2) będą odczuwane przez linię opóźniającą jako dodatkowe obciążenie masą, natomiast delokalizacja ładunku i powstawanie dziur, jako zmiana przewodnictwa warstwy.

Znając mechanizmy oddziaływań gazów utleniających z warstwą PcMe można z dużą selektywnością prowadzić detekcję O_2 , NO_2 i halogenków, stosując ftalocyjaniny jako substancje chemoczułe, zmieniając jedynie warunki procesu, parametry warstwy i technikę aplikacji.

3. METODY EKSPERYMENTALNE

Większość ośrodków zajmujących się wykrywaniem gazów utleniających z wykorzystaniem ftalocyjaninów, typuje jako najbardziej efektywne ftalocyjanin miedzi (PcCu) i ftalocyjanin ołowiu (PcPb). W omawianej pracy zastosowano jako substancję wyjściową warstw chemoczułych ftalocyjanin miedzi firmy Aldrich Chemical Comp. Inc.(USA).

Ftalocyjaniny i metaloftalocyjaniny występują w trzech formach polimorficznych α , β , γ . Postać γ jest fazą przejściową, nietrwałą, stabilne zaś są formy α i β . Forma β ma postać igieł, dochodzących do 2 cm, pozostałe formy są drobnoziarniste, a wielkość ziarna jest rzędu 0,001÷0,005 mm.

Stosowany ftalocyjanin miedzi charakteryzuje się strukturą krystalograficzną b, długość igieł waha się w zakresie 0,5+2 cm. Na podstawie przeprowadzonej analizy rentgenograficznej stwierdzono, że substancja ta jest w niewielkim stopniu zanieczyszczona CuCN i grafitem.

Warstwy ftalocyjaninu miedzi otrzymano poprzez sublimację tego związku w próżni i resublimację na żądanym podłożu. Procesy te prowadzono w konwencjonalnej napylarce próżniowej, przystosowanej i zmodyfikowanej do tego celu. Źródłem parowania były molibdenowe łódki o odpowiednio dobranej geometrii, wykonane we własnym zakresie.

Proces osadzania warstwy w warunkach stosowanego oprzyrządowania podkloszowego w napylarce zachodził dwustopniowo: oczyszczanie substancji wyjściowej poprzez sublimację i resublimację wewnątrz odpowiednio skonstruowanego źródła parowania, po czym ponowna sublimacja na właściwym podłożu.

Próby formowania warstw chemoczułych prowadzono przy ciśnieniach rzędu 10^{-2} ÷ 10^{-6} Tr, odległościach od źródła parowania w zakresie 40÷100 mm i dla różnych temperatur źródła parowania i podłoża.

W zależności od tego, jakim testom były poddawane próbki w dalszych badaniach, warstwy nakładano na płytki szklane o powierzchni $\approx 50 \text{ cm}^2$ (w celu określenia obszaru jednorodnego pokrycia i zminimalizowania błędu oznaczenia masy), na podłoża z blachy aluminiowej i ceramiki alundowej (badania rentgenograficzne) oraz na jedną z linii opóźniających na podłożach z niobianu litu o orientacji krystalograficznej 128° YX i kwarcu o orientacji STX, przy zastosowaniu masek mechanicznych.

Skład fazowy oraz morfologię naniesionych warstw określano za pomocą mikroskopu elektronowego i dyfrakcji rentgenograficznej.

Grubość powłok oceniano metodami interferencyjnymi i rentgenograficznymi, profilografem oraz kwarcowym miernikiem w czasie procesu sublimacji.

4. WYNIKI I ICH OMÓWIENIE

4.1. PROCES FORMOWANIA WARSTWY PcCu

Mechanizm i kinetyka reakcji warstwy chemoczułej z substancją wykrywaną uzależnione są od parametrów tej warstwy, a te z kolei zdeterminowane są warunka-

Rys. 4. Morfologia substancji wyjściowej (PcCu).

Rys. 5. Pozostałość wsadu po procesie sublimacji w zbyt wysokiej temperaturze.

Formowanie warstwy ftalocyjaninu ...

mi jej formowania.

Ftalocyjaniny wymagają bardzo precyzyjnego doboru parametrów osadzania, przede wszystkim ze względu na nieznaczną różnicę pomiędzy temperaturą sublimacji i temperaturą rozkładu tych związków.

Temperatura procesu sublimacji w stosowanych warunkach oprzyrządowania, określona jest poprzez natężenie prądu w obwodzie wtórnym, którego elementem jest źródło parowania. Natężenie to musi się mieścić w ściśle określonym przedziale 55+80 A (odpowiada to bardzo wąskiemu zakresowi wartości natężenia w obwodzie pierwotnym). Stwierdzono, że przy prądach poniżej 55 A sublimacja nie zachodziła, a przy prądach powyżej 80 A część wsadu ulegała sublimacji, część zaś pozostawała w łódce. Na rysunkach 4 i 5 przedstawiono morfologię substancji wyjściowej oraz pozostałości po procesie przy natężeniu powyżej 80 A. Substancja ta (rys.5) miała charakter amorficzny, stwierdzono w niej produkty rozkładu i utlenienia. Degradacja ftalocyjaninu miedzi przy temperaturach odpowiadających natężeniu prądu rzędu 80 A, zachodzi niezależnie od wysokości próżni, zmienia się tylko skład produktów rozkładu. Masa i grubość otrzymywanych warstw zależy głównie od ilości wsadu i odległości od źródła parowania.

Odległość od źródła parowania	Masa wsadu	Obciążenie osadzoną masą	Grubość warstwy
[mm]	[g]	[g/cm ²]	[µm]
	0,03	1,00×10-4	1,20
40 60 100	0,06	1,32×10-4	1,45
	0,09	1,94×10-4	2,00
	0,20	3,82×10-4	4,00
	0,03	0,40×10-4	0,36
	0,06	0,83×10-4	0,90
	0,09	0,89×10-4	0,98
	0,20	2,50×10-4	2,80
	0,03	0,10×10-4	0,10
	0,06	0,35×10-4	0,25
	0,09	0,47×10-4	0,33
	0,20	0,63×10-4	0,45

Tabela 1. Zależność grubości i masy warstwy PcCu od ilości substancji wyjściowej i odległości podłoża od źródła parowania.

Rys. 6. Morfologia warstwy osadzonej przy ciśnieniu p-10⁻² Tr.

Rys. 7. Morfologia warstwy osadzonej przy ciśnieniu p-10⁻⁶ Tr.

Wyniki przedstawione w tabeli 1 dotyczą warstw otrzymanych w temperaturze otoczenia w tych samych warunkach próżniowych i prądowych.

Porowatość osadzonych warstw zależy głównie od ciśnienia w jakim prowadzi się proces sublimacji, bardziej subtelne zmiany wywołane są zmianami natężenia prądu płynącego przez źródło. Ilustrują to rysunki 6, 7, 8. Rysunek 6 obrazuje morfologię warstwy osadzonej przy ciśnieniu 10^{-2} Tr, a rysunek 7 morfologię warstwy osadzonej przy ciśnieniu 5×10^{-6} Tr (pozostałe warunki osadzania - identyczne). Wielkość ziarna w obydwu przypadkach jest taka sama i wynosi ≈ 145 nm.

Ze wzrostem próżni i natężenia prądu płynącego przez źródło parowania wzrasta gęstość pokrycia od 0,17 g/cm³ do 1,6 g/cm³, przy czym ze wzrostem ciśnienia i natężenia prądu masa i grubość pokrycia maleje.

Manewrowanie takimi parametrami jak: wysokość próżni, odległość od źródła parowania, czy też temperatura źródła wywołuje zmiany gęstości upakowania warstwy, grubości i morfologii, lecz nie ma wpływu na skład fazowy i granulometryczny pokrycia.

Parametrem decydującym o strukturze krystalograficznej osadzonej warstwy jest temperatura podłoża. Na rysunkach 9, 10, 11, 12 przedstawiono struktury warstwy PcCu uzyskane w różnych warunkach temperaturowych.

W zakresie temperatury podłoża do 100° C otrzymuje się drobnoziarnistą strukturę α , powyżej 150° C rozpoczyna się proces formowania fazy β i osadzone warstwy są dwufazowe. W temperaturze powyżej 280° C uzyskuje się fazę β . Wzrost temperatury podłoża powyżej 400° C powoduje degradację naniesionego filmu. Przy dalszym podnoszeniu temperatury podłoża obserwuje się wtórną sublimację z podłoża.

W omawianym zakresie parametrów formowania warstw uzyskiwane pokrycia

charakteryzowały się gęstością 0,17 g/cm³ \pm 1,6 g/cm³, grubością w zakresie 0,1 \pm 1.5 µm, różnym składem fazowym i granulometrycznym.

I [imp/sek]

b)

Rys. 10. Mieszana struktura warstwy PcCu faza α i faza β (igły). Temperatura podłoża 200°C.

a) Dyfraktogram próbki w promieniowaniu CuKα.

b) Morfologia warstwy.

b)

Rys. 11. Struktura PcCu (igły - faza β). Temperatura podłoża 300°C.

a) Dyfraktogram próbki w promieniowaniu CuKa.

b) Morfologia warstwy.

b)

Rys. 12. Niejednorodna fazowo struktura PcCu. Temperatura podłoża 400°C.

a) Dyfraktogram próbki w promieniowaniu CuKα.

b) Morfologia warstwy.

4.2. WPŁYW PARAMETRÓW WARSTWY PcCu NA CZAS I CZUŁOŚĆ ODPOWIEDZI SENSORA

Efektywność pracy czujnika określona jest przede wszystkim przez czułość detekcji i czas odpowiedzi. Geometria, struktura fazowa i granulometryczna warstwy ftalocyjaninów mają decydujący wpływ na te parametry. Jak bardzo istotna i precyzyjna jest ta zależność ilustrują przedstawione niżej wyniki prac własnych i odpowiednio zinterpretowane dane literaturowe [4].

Odpowiedź czujnika jest rejestracją zmian częstotliwości różnicowej układu linii opóźniających, zachodzących pod wpływem reakcji warstwy chemoczułej z NO₂. Czułość definiowana jest jako maksymalna zmiana mierzonego parametru w czasie ekspozycji warstwy na działanie gazu. Czas odpowiedzi jest okresem, w którym ta zmiana zachodzi.

Uwarunkowany jest on czasem trwania takich procesów jak: utworzenie powierzchniowej warstwy adsorpcyjnej na powierzchni sorbentu, dyfuzji w głąb porów warstwy, ustalenie się równowagi, delokalizacji ładunków. Szybkość tych procesów jest uwarunkowana strukturą granulometryczną i krystalograficzną warstwy. Na rysunkach 13 i 14 przedstawione są krzywe odpowiedzi w funkcji czasu czujników na podłożu z niobianu litu, zawierających warstwę ftalocyjaninu miedzi o strukturze α i β .

Rys. 13. Zmiana częstotliwości różnicowej wywołana działaniem 10 ppm NO_2 w funkcji czasu z warstwą PcCu o strukturze α .

Rys. 14. Zmiana częstotliwości różnicowej wywołana działaniem 10 ppm NO₂ w funkcji czasu z warstwą PcCu o strukturze β na niobianie litu.

Obie warstwy osadzone były w tych samych warunkach próżniowych, prądowych i w tej samej odległości od źródła parowania, przy różnych temperaturach podłoża.

W przypadku drobnoziarnistej warstwy o strukturze α i przy stosunkowo małej porowatości pokrycia obserwuje się małą czułość, przy prawie natychmiastowej odpowiedzi.

Zgodnie z podstawową teorią adsorpcji Langmuira, zakłada się powstawanie na powierzchni adsorbentu jednocząsteczkowej warstwy adsorpcyjnej, która ekranuje działanie sił na większą odległość. Obserwuje się więc dosyć szybkie nasycenie w danych warunkach detekcji. Podwyższenie czułości może być osiągnięte przez zwiększenie aktywnej powierzchni warstwy, dzięki dyfuzji cząstek w pory struktury czułej. W przypadku więc warstw o strukturze β , o rozbudowanej powierzchni roboczej i stosunkowo dużym ziarnie, czas odpowiedzi się wydłuża, ale czułość znacząco wzrasta. Oczywiście czułość sensora zależy w dużej mierze też od warunków detekcji, zmieniając je możemy zmienić przebieg izotermy czy też izobary adsorpcji, ale to jest zupełnie inne zagadnienie, nie objęte niniejszym artykułem.

Rys. 15. Czułość warstwy PcZn o strukturze krystalograficznej α w funkcji stężenia NO₂:

- a) grubość warstwy -1 jednostka,
- b) grubość warstwy 2 jednostki,
- c) grubość warstwy 3 jednostki.

Rys. 16. Czułość warstwy PcZn o dwufazowej strukturze krystalograficznej (α + β) w funkcji stężenia NO,:

a) grubość warstwy -1 jednostka,

b) grubość warstwy - 2 jednostki,

c) grubość warstwy - 4 jednostki.

Czułość odpowiedzi w funkcji stężenia analizowanego gazu dla różnych struktur krystalograficznych i różnych grubości warstw ftalocyjaniów ilustrują rysunki 15, 16, 17. Przedstawione krzywe powstały w oparciu o wyniki badań przeprowadzonych w Instytucie Chemii Fizycznej w Mediolanie [4]. Dotyczyły one wprawdzie półprzewodnikowych czujników wykorzystujących ftalocyjanin cynku, ale prawidłowości związane z charakterem oddziaływania PcME są właściwie niezależne od wbudowanego metalu i od typu podłoża, na którym osadzona jest warstwa. Czułość określono jako zmianę przewodnictwa wywołaną działaniem gazu do przewodnictwa pierwotnego. Każda warstwa o określonej strukturze krystalograficznej ma charakterystyczną dla siebie grubość zapewniającą maksymalną czułość detekcji (niestety autorzy artykułu nie podają wartości tych grubości). Zmiana grubości w jakimkolwiek kierunku radykalnie obniża czułość warstwy.

5. PODSUMOWANIE

Złożoność procesu formowania warstwy ftalocyjaninu metalicznego spowodowana jest dużą ilością czynników wzajemnie zależnych, takich jak: fazowość, topologia, morfologia, granulacja i geometria.

Każdy układ krystalograficzny uzyskiwany w określonych warunkach formowania może charakteryzować się różną morfologią, determinującą z kolei optymalną dla detekcji grubość.

Uzyskane warstwy PcCu o różnych parametrach wykazywały zdolność adsorbcji i desorpcji dwutlenku azotu.

Odpowiedni zestaw wyżej omawianych czynników zapewniających warunki efektywnej analizy jest podyktowany indywidualnymi cechami aparatury technologicznej i pomiarowo-aplikacyjnej oraz konstrukcją sensora. Badania aplikacyjne opisanych warstw będą tematem dalszych artykułów.

BIBLIOGRAFIA

- Mockert H., Schmeisser D., Göpel W.: Lead phthalocyanine (PbPc) as a prototype organic material for gas sensors: comparative electrical and spectroscopic studies to optimize O₂ and NO₂ sensing. Sensors and Actuators 1989 19, 159-176
- [2] Rebiefe D., Duchamp G., Pistré J.: Surface acoustic wave NO₂ influence of humidity. Sensors and Actuators 1993 B, 13-14, 642-645
- [3] Göpel W., Schirbaum K. D. Schmeisser D. Wiemhofer H. D.: Prototype chemical sensors for the selective detection of O₂ and NO₂ in gases. Sensors and Actuators 1989, 17, 377-384
- [4] Pizzini S., Timo G.L., Beghi M., Butta N., Mari C. M.: Influence of the structure and morphology on the sensitivity to nitrogen oxides of phthalocyanine thin-film resistivity sensors. Sensors and Actuators 1989 17, 481-491

SUMMARY

FORMING OF COPPER PHTHALOCYANINE FILMS FOR NO, DETECTION

In this paper the copper-phthalocyanine (PcCu) films forming conditions are described. The paper also gives the relationships between the parameters of deposition, the structure of PcCu films and the course of detection.

СОДЕРЖАНИЕ

ФОРМИРОВАНИЕ ХИМИЧЕСКО-ЧУВСТВИТЕЛЬНОЙ НА NO₂ ПЛЁНКИ НА ОСНОВЕ ФТАЛОЦИАНИНА МЕДИ

В статье представлены условия формирования плёнки фталоцианина меди и взаимные соотношения между параметрами осаждения, структурой плёнки и током детекции.