WARSTWY BARIEROWE Z TLENKÓW KRZEMU NA FOLIACH POLIESTROWYCH DO PAKOWANIA ŻYWNOŚCI

Henryk Tomaszewski, Grzegorz Gawlik, Małgorzata Możdżonek, Andrzej Jagoda, Krzysztof Góra

Celem pracy było uzyskanie cienkich warstw tlenków krzemu na podłożach poliestrowych, jako warstw barierowych obniżających przepuszczalność tlenu i pary wodnej. Stosowano target tlenkowy i metaliczny. Warstwy analizowano metodami: dyfrakcji rentgenowskiej (RBS) i mikroskopii elektronowej (FTIR). Ocena właściwości barierowych warstw wykazała, iż obecność SiO_x na folii (PET) o grubości 80 µm obniża ~ 50-krotnie przepuszczalność folii dla tlenu w porównaniu z folią nie pokrytą, niezależnie od stopnia niestechiometrii warstwy i jej grubości w zakresie 40-150 nm. Niestechiometria warstwy ma natomiast istotny wpływ na przeświecalność w zakresie światła widzialnego.

1. WPROWADZENIE

Jednym z elementów współczesnej cywilizacji jest wzrastająca ilość produktów i półproduktów spożywczych przygotowywanych w warunkach przemysłowych, a następnie rozprowadzanych w sieciach handlowych. Do ich pakowania powszechnie stosowane są folie wielowarstwowe (laminaty) z udziałem warstwy poliestrowej, najczęściej z *folii poliestrowej* (PET) oraz *polipropylenowej* (PP).

W wielu zastosowaniach barierowość tych warstw, bądź to w stosunku do pary wodnej, bądź też do takich gazów, jak tlen czy dwutlenek węgla jest niewystarczająca. Znaczna przepuszczalność tlenu i pary wodnej wpływa na istotne ograniczenie okresu trwałości pakowanych produktów. Dlatego też dla nadania maksymalnej barierowości, w tym również dla uzyskania ochrony przed fotoutleniającym promieniowaniem UV, jako jedną z warstw laminatu wykorzystuje się folię aluminiową. Pewien wzrost barierowości osiągany jest również w wyniku metalizacji folii z tworzyw sztucznych (próżniowe nakładanie warstw aluminium).

Wadą folii aluminiowych, a w pewnym stopniu również i folii metalizowanych, jest ich nieprzydatność do pakowania produktów przewidzianych do podgrzewania w kuchenkach mikrofalowych, którymi nasycenie punktów gastronomicznych i go-

¹ Instytut Technologii Materiałów Elektronicznych, ul.Wólczyńska 133, 01-919 Warszawa

spodarstw domowych dynamicznie wzrasta, również i w Polsce. Istnieje także szereg produktów wymagających przezroczystych opakowań, co oczywiście wyklucza obecność warstwy Al. Ponadto aluminium należy do surowców o najwyższej energochłonności wytwarzania. Istotnym argumentem przeciw bezpośredniemu kontaktowi aluminium z żywnością jest podejrzewanie o powodowanie choroby Alzheimera.

Przytoczona sytuacja stanowi uzasadnienie dla podjęcia prac nad dyfuzyjnymi pokryciami barierowymi, prowadzonymi od kilku lat przez wielonarodowe konsorcja, takie jak Camvac Ltd, Hoechst i wiele innych.

Wyniki pierwszych, publikowanych prac prowadzonych w Japonii i w Europie w ramach programu BRITE-EURAM wskazuja, iż obiecujacymi materiałami na dyfuzyjne warstwy barierowe są tlenki: SiO, i Al,O, lub ich mieszaniny. Obniżają one przepuszczalność tlenu i pary wodnej pięćdziesięcio do stukrotnie w porównaniu do "czystej" folii PET i PP, a ponadto są bezbarwne i przezroczyste (co jest nie bez znaczenia dla klienta - widzi co kupuje), nadające się do powtórnego wykorzystania i przerobu (recyklingu), a zatem przyjazne dla środowiska i nadające się do podgrzewania mikrofalowego. Wadą tlenkowych pokryć jest ich mniejsza ciągliwość, niż aluminium i większa skłonność do pękania podczas intensywnego rozciągania. Jest ona jednakże minimalizowana przez redukcje grubości warstwy do 40-100 nm. W przypadku zastosowań opakowaniowych warstwa tlenkowa stanowi w laminacie, z reguły, warstwe wewnetrzna, a zatem jest w mniejszym stopniu narażona na uszkodzenia. Ponadto, jak się okazuje, spękania w tych warstwach w wyniku przebywania w wilgotnej atmosferze ulegają "samozaleczeniu", dzięki hydratacji zerwanych wiązań, odzyskując pierwotne buforowe właściwości. Do wytwarzania warstw tlenkowych mogą być stosowane wszystkie metody technologii cienkowarstwowych, a wiec: plasma vapour deposition (PVD), chemical vapour deposition (CVD), plasma enhanced chemical vapour deposition (PECVD), odparowanie oraz magnetronowy sputtering.

2. PRZEGLĄD LITERATURY

Jak wcześniej podano, podstawowymi materiałami stosowanymi na pokrycia barierowe są tlenki SiO_x [1-11], Al₂O_x [1,2,6] i ich mieszaniny (*double oxide barriers*) [1,3]. Warstwy te nakłada się na podłoża poliestrowe i polipropylenowe o grubościach: 12-23, 80-100 i około 150 mikrometrów. Jako najczęściej stosowane metody do wytwarzania warstw barierowych wymienia się odparowanie (*evaporation*) i sputtering (Tab.1), tym niemniej stosuje się również wspomaganą plazmą metodę CVD i PECVD.

Bez względu na rodzaj stosowanej metody osadzania, warstwy SiO_x i Al_2O_x są rentgenograficznie bezpostaciowe [8,9]. Jednak jednoznacznie ocenia się, iż pomimo

niższych szybkości osadzania, metody stosujące plazmę (sputtering, PECVD) dają warstwy bardziej zwarte, mniej porowate, a tym samym o mniejszej przepuszczalności tlenu (OTR) - oxygen transmition rate i pary wodnej (WVTR) - water vapour transmition rate. Niższe wydajności tradycyjnych procesów sputteringowych są, jak można zauważyć, intensywnie zwielokratniane poprzez wprowadzanie nowych rozwiązań np. w postaci wirujących magnetronów (rotatable magnetrons) [12].

Tabela 1. Stosowane procesy osadzania i typowe parametry warstw tlenkowych na podłożach z tworzyw sztucznych [8].

 Table 1. Deposition processes, typical parameters and applications for oxide layers on plastic films [8].

Proces osadzania	Typowe materiały	Grubość warstw, µm	Szybkość osadzania, nm/s
Sputtering	SiO ₂ , ZrO_2 , TiO_2 , ITO	0,02-0,1	0,5-5
Odparowanie	SiO ₂ , Al ₂ O ₃ , MgO	0,05-0,1	20-100

Przeświecalność i właściwości barierowe warstw SiO_x, jak podaje Krug [9], są zależne od grubości warstwy i stopnia niestechiometrii tlenku, czyli wartości parametru x w cząsteczce. Zdaniem Kruga [9], przepuszczalność tlenu jest niezależna od grubości warstwy powyżej 60 nm. Gdy warstwa jest grubości poniżej 40 nm, wzrost przepuszczalności wiąże się z obecnością na podłożu obszarów nie w pełni pokrytych materiałem barierowym. Z drugiej strony wiadomo, że warstwy SiO_x są stosunkowo ciągliwe przy grubościach poniżej 100 nm, stąd też wynika korzystny ze względów użytkowych zakres grubości warstwy tlenku mieszczący się w przedziale 60-100 nm.

Przepuszczalność tlenu drastycznie wzrasta, jak podaje Krug [9], ze wzrostem udziału tlenu x w cząsteczce SiO_x. Dwutlenek krzemu SiO₂ (x=2) nie posiada, zdaniem Kruga [9], właściwości barierowych, nawet dla warstw wytwarzanych metodą sputteringu, którą to metodę, również i Krug [9] uważa za dającą warstwy o zdecydowanie gęstszej mikrostrukturze.

Zupełnie przeciwstawne dane dotyczące wpływu niestechiometrii tlenku krzemu na przepuszczalność warstw barierowych przytacza Felts [11]. Jak widać z Tab.2, jakość warstw SiO_x jest zależna od metody wytwarzania, a nie tylko od stopnia niestechiometrii, którego wartość bezwzględna zmienia się z zastosowaną metodą pomiarową, o czym świadczą dane zawarte w Tab.3 (dotyczące tej samej próbki).

Fourierowska spektroskopia w podczerwieni - Fourier transform infrared spectroscopy (FTIR) w obszarze cienkich warstw SiO_x na podłożach z tworzyw

Tabela 2. Przepuszczalność tlenu warstw SiO_x na folii PET o grubości 0,5 mm wytworzonych metodami sputteringu i odparowania [11].

Table 2. Oxygen transmission rate of SiO_x thin films on 0.5mm thick PET substrate prepared by sputtering and evaporation [11].

Metoda	Grubość warstwy,	Przepuszczalność	Stechiometria
osadzania	nm	tlenu,	oznaczana metodą
		cm ³ /100cali ² /doba	FTIR
Podłoże nie pokryte	-	7,77	-
Odparowanie	109,2	1,65	2,0
Odparowanie	110	7,77	1,88
Sputtering	102,7	0,15	1,81
PECVD	65	0,04	1,8

Tabela 3. Porównanie oceny stopnia niestechiometrii SiO_x metodami FTIR i ESCA (*Electron Spectroscopy for Chemical Analysis*) [11].

Table 3. Comparison of SiO, nonstoichiometry made by FTIR and ESCA [11].

Metoda osadzania	FTIR	ESCA	
Sputtering	1,81	2	
PECVD	1,8	2	

sztucznych jest stosowana zarówno do zapisu widm wiązań w warstwie, jak i jej stechiometrii. Jak wykazał Pai i in. [13] położenie piku "stretching" wiązania Si-O-Si jest proporcjonalne do stosunku koncentracji tlenu do krzemu, to znaczy do wartości parametru x w cząsteczce SiO_x (Rys.1). O ile położenie piku "stretching" może być korelowane ze stopniem niestechiometrii SiO₂, o tyle poszerzenie tego piku jest związane ze wzrostem ilości wiązań Si-O. Felt [11] idąc dalej wykazał, że poszerzenie wibracyjnego piku Si-O-Si powinno być proporcjonalne do wzrostu gęstości warstwy, którą bezpośrednio można przełożyć na wzrost odporności na dyfuzję tlenu czy też pary wodnej. Uzyskane przez Felta [11] powierzchnie piku "stretching" Si-O-Si znormalizowane do grubości warstwy zestawiono w Tab.4. Wynika z niej wyraźna korelacja pomiędzy poszerzeniem

Rys. 1. Częstotliwość wibracji typu "stretching" wiązania Si-O-Si, jako funkcja x w warstwach SiO_x [13]. Punkt dla SiO został zaczerpnięty z [14].

Fig. 1. Frequency of Si-O-Si stretching vibration as function of oxygen composition, x in SiO_x alloy films [13]. The point for SiO is from [14].

piku i metoda osadzania, a własnościami barierowymi warstwy. Przepuszczalność tlenu jest tym mniejsza im powierzchnia piku "stretching" znormalizowana do grubości warstwy jest większa od wartości 0,016. Jak widać, metody sputteringowe i PECVD spelniają ten warunek. Powyższe wyniki potwierdzają wage oddziaływania plazmy z powierzchnia warstwy podczas jej wzrostu, a to właśnie ma miejsce w obu ww. metodach. Zatem gestość warstwy, oddziaływanie plazmy w trakcie jej wzrostu, mechanizmy wzrostu i skład warstwy winny być brane pod uwagę przy optymalizacji własności barierowych.

Przedstawione wyniki nie są wyraźnie jednoznaczne, co do wpływu stopnia niestechometrii SiO_x na przepuszczalność tlenu przez warstwę osadzoną na PET. Problem ten postawiono do wyjaśnienia w ramach tej pracy. Jednoznaczny natomiast jest wpływ tej niestechiometrii na przeświecalność (transparencję) warstwy. W wyniku utraty tlenu warstwy SiO_x stają się coraz bardziej żółte, mniej przezroczyste i absor-

bują światło w określonym przedziale długości fal. Przeświecalność w funkcji długości fal dwu różnych warstw SiO_x na folii PET w porównaniu z przeświecalnością podłoża nie pokrytego przedstawiono na Rys.2.

Przeświecalność warstwy tlenku, co jest oczywiste, jest również zależna od grubości warstwy, zatem wahania grubości warstwy w ciągu technologicznym winny być utrzymywane w możliwie wąskim przedziale.

-

H.Tomaszewski, G.Gawlik, M.Możdżonek, A.Jagoda, K.Góra

Tabela 4. Porównanie powierzchni pików FTIR warstw SiO_x na folii PET otrzymanych różnymi metodami osadzania [11].

Table 4. Comparison of FTIR area of SiO_x films on PET substrates prepared by evaporation, sputtering and PECVD [11].

Metoda osadzania	Położenie piku "stretching"	Powierz- chnia piku "stretching"	Grubość warstwy, nm	Stosunek powierzchni piku do grubości warstwy	Przepusz- czalność tlenu, cm ³ /100 cali ² /doba
Odparowanie	1062	17981	110	0,016	7,77
Odparowanie	1065	11,54	109,1	0,011	7,77
Odparowanie	1065	14,3	109,2	0,013	7,77
Odparowanie	1062	5,8819	38,3	0,015	3,78
Sputtering	1052	20,5922	102,7	0,02	0,25
Sputtering	1054	37,794	204,3	0,018	0,15
Sputtering	1060	11,8253	36,9	0,032	0,13
PECVD	1063	11,5256	51	0,023	0,04
PECVD	1063	17,5725	65	0,027	0,02
PECVD	1060	12,053	55,8	0,022	0,03

Rys. 2. Przeświecalność warstw SiO_x na folii PET w porównaniu z nie pokrytą folią PET w funkcji długości fal [9].

Fig. 2. Transparency vs wavelength of two different SiO_x samples on PET in comparison to uncoated PET [9].

http://rcin.org.pl

3. PRZYGOTOWANIE PRÓBEK I PRZEPROWADZENIE BADAŃ

Do osadzania cienkich warstw wykorzystano stanowisko do sputteringu magnetronowego typu SCM 450 firmy Alcatel oraz stanowisko ULVAC. W pierwszym przypadku jako target posłużył kwarcowy dysk o średnicy 100 mm, w drugim zaś target stanowił dysk metalicznego krzemu o średnicy 150 mm. Płytki szklane o wymiarach 76 x 26 mm i płytki krzemowe były stosowane jako podłoża do prac wstępnych. Jako podłoże docelowe przygotowano PET o grubości 80 µm wytwarzaną przez Zakłady Tworzyw Sztucznych "NITRON" w Krupskim Młynie. Warstwy osadzano w zakresie mocy od 30 do 500 W i przepływów argonu od 15 do 100 cm³/ min. Ponieważ wymienione wyżej stanowiska nie posiadają zaworów pozwalających na regulację ciśnienia w komorze roboczej, każdej zmianie przepływu argonu towarzyszyła zmiana ciśnienia.

Szybkość osadzania warstwy określano poprzez pomiar grubości warstwy przy zastosowaniu profilografu Alfa-step i odpowiadającego tej grubości czasu osadzania.

Warstwy charakteryzowano za pomocą dyfrakcji rentgenowskiej (dyfraktometr Siemensa Kristalloflex D5000), *Rutherford back scatering* (RBS) i FTIR. Pomiary RBS, pozwalające na ocenę stopnia stechiometrii warstw, realizowano w strumieniu jonów He⁴⁴ o energii 2MeV wytworzonej w akceleratorze van der Graafa (Instytut Fizyki UW). Strumień jonów helu miał przekrój ~ 0,5 mm² (ϕ =0,8 mm) przy ciśnieniu roboczym 1,33x10⁴ Pa. Cząstki odbite zliczano za pomocą stałego detektora typu Ortec pod kątem 165° i z rozdzielczością 15 KeV. Jako drugą metodę do oceny stopnia utlenienia warstw tlenku krzemu zastosowano spektroskopię w podczerwieni FTIR. W tym celu próbki warstw osadzone na podłożu krzemowym analizowano za pomocą aparatu IFS 113v firmy Bruker w zakresie widmowym od 4000 do 400 cm⁻¹ przy zdolności rozdzielczej 4 cm⁻¹. Widma warstw tlenku uzyskiwano przez odejmowanie absorpcji związanej z podłożem krzemowym.

Powierzchnię warstw cienkich i ich przełamy obserwowano za pomocą elektronowego mikroskopu skanningowego OPTON DSM950.

Własności barierowe warstw osadzonych na folii PET o grubości 80 µm w stosunku do tlenu oznaczano aparatem OXTRAN 100 w Ośrodku Badawczo-Rozwojowym Opakowań w Warszawie, zaś ich przeświecalność w zakresie światła widzialnego przy zastosowaniu spektrofotometru Beckman (ITME).

4. WYNIKI BADAŃ I ICH DYSKUSJA

Dla oceny szybkości osadzania warstw SiO_x z targetu kwarcowego przeprowadzono próby osadzania zarówno w funkcji zastosowanej mocy (przy stałym przepływie argonu), jak i w funkcji wielkości przepływu argonu (przy stałej mocy). Uzyskane wyniki zestawiono w Tabeli 5-7. Jak wynika z powyższych danych, zależ-

ność szybkości osadzania od wielkości mocy jest oczywista. Im wyższa moc, tym wyższa szybkość osadzania. Wzrost przepływu argonu przy stałej mocy oznacza wzrost ilości jonów argonowych bombardujących target kwarcowy, czemu winien towarzyszyć wzrost szybkości osadzania tlenku. Wzrost przepływu argonu skutkuje jednak również wzrostem ciśnienia w komorze, a tym samym spadkiem średniej energii cząstek. Stąd obserwowany zaledwie nieznaczny wzrost szybkości osadzania tlenku na podłożu.

Tabela 5. Szybkość osadzania warstw SiO_x na podłożu szklanym i krzemowym w funkcji wielkości przepływu argonu przy stałej mocy 500 W.

Table 5. Deposition speed of SiO_x films on glass and Si substrates as function of argon flow rate for rf power used of 500W.

Przepływ argonu, cm ³ /min	15	20	30	40	60	100
Ciśnienie robocze, mbar	1x10 ⁻³	1,8x10 ⁻³	$2x10^{-3}$	2,5x10 ⁻³	3,8x10 ⁻³	6x10 ⁻³
Szybkość osadzania, nm /min	25,5	28,3	28,7	29,2	29,6	30,4

Tabela 6. Szybkość osadzania warstw SiO_x w funkcji mocy dla stałego przepływu argonu równego 20 cm³/min.

Table 6. Deposition speed of SiO_x films as function of rf power used for argon flow rate of 20 sccm.

Przepływ argonu, cm ³ /min	20	20	20	20	20
Ciśnienie osadzania, mbar	1,8 x10 ⁻³	$1,8 \times 10^{-3}$	$1,8 \times 10^{-3}$	$1,8 \times 10^{-3}$	$1,8 \times 10^{-3}$
Moc, W	500	300	100	50	30
Szybkość osadzania, nm/min	28,3	19,98	7,8	4,37	2,38

Jak w każdym procesie technologicznym, a zwłaszcza w przypadku warstw barierowych, istotna jest jednorodność grubości warstwy. W tym celu grubość warstwy mierzono w trzech krańcowych miejscach podłoża szklanego, ulokowanego centralnie w stosunku do osi magnetronu. Jak wynika z zestawienia w Tabeli 8, rozrzut grubości warstwy jest funkcją mocy zastosowanej podczas osadzania. Im wyższa moc tym mniejszy rozrzut grubości warstwy.

Tabela 7. Szybkość osadzania warstw SiO_x w funkcji mocy dla stałego przepływu argonu równego 100 cm³/min.

Table 7. Deposition speed of SiO_x films as function of rf power used for argon flow rate of 100 sccm.

Przepływ argonu, cm ³ /min	100	100	100	100
Ciśnienie osadzania, mbar	6x10 ⁻³	6x10 ⁻³	6x10 ⁻³	6x10 ⁻³
Moc, W	500	300	100	50
Szybkość osadzania, nm /min	30,4	21,6	9,58	4,03

Tabela 8. Rozrzut grubości warstwy tlenku $SiO_x w$ funkcji mocy (przepływ argonu równy 20 cm³/min).

Table 8. Uniformity of SiO_x film thickness as function of rf power used for argon flow rate of 20 sccm.

Moc, W	Gruboś	ć warstwy tlen	ku, nm	Odchylenie grubości warstwy od wartości środkowej, %	
	Góra	Środek	Dół	Góra	Dół
30	775,0	855,5	755,0	9,4	11,74
100	265,0	299,5	266,5	11,5	11,01
500	563,0	567,5	563,0	0,79	0,79

Jak wskazuje dyfrakcja rentgenowska, bez względu na wielkość zastosowanej mocy i przepływu argonu warstwy tlenku krzemu są bezpostaciowe.

Widma FTIR warstw tlenku krzemu przygotowane dla dwu krańcowych przepływów argonu (20 i 100 cm³/min) wskazują na istotne różnice w jakości tych warstw (Tab. 9). Położenie piku "stretching" warstw wykonanych dla przepływu 20 cm³/min

Moc, W	Przepływ argonu, cm ³ /min	Położenie pików FTIR tlenku, cm ⁻¹		Grubość warstwy nm	Stosunek powierzchni piku do grubości warstwy	Szerokość połówkowa piku stretching, cm ⁻¹	
30	20	1068	824	454	855,5	0,0149	108
50	20	1067	824	455	873,0	0,0155	127
100	20	1065	821	456	780,8	0,0149	123
300	20	1071	823	454	659,5	0,0154	109
500	20	1068	814	454	283,5	0,0114	-
50	100	1074	819	454	805,5	0,0106	106
100	100	1079	813	455	957,5	0,0112	99
300	100	1076	815	455	712,7	0,0102	100
500	100	1074	820	477	603,0	0,0149	99
Tlenek	termiczny	1080	805	458	110,0	0,0197	77

Tabela 9. Charakterystyka FTIR warstw SiO_x w funkcji warunków ich wytwarzania. **Table 9.** FTIR characteristics of SiO_x films as function of sputtering conditions.

dowodzi, iż warstwy te są nieznacznie niestechiometryczne, przy czym zgodnie z zależnościami przedstawionymi na Rys.1, wartość parametru x w formule SiO_x kształtuje się na poziomie 1,8-1,9. Tymczasem położenie tego samego piku dla próbek wykonanych przy przepływie argonu równym 100 cm³/min jest istotnie wyższe i bliskie wartości dla tlenku termicznego (1080 cm⁻¹), a zatem w pełni stechiometrycznego. Analiza porównawcza stechiometrii tlenku wykonana metodą RBS, wskazuje natomiast na ich pełną stechiometrię bez względu na wielkość przepływu argonu.

Powyższe różnice w ocenie stopnia niestechiometrii są prawdopodobnie wynikiem progu czułości metody dla niewielkich odchyleń od stechiometrii. Powinny być one przedmiotem dalszych badań.

Na wyraźne różnice w jakości warstw przygotowanych dla przepływów argonu 20 i 100 cm³/min wskazują sugerowane również przez Feltsa [11] wartości stosunku powierzchni piku "stretching" do grubości warstwy. Wartości te, przedstawione w Tab.9, potwierdzają, iż warstwy wytworzone przy niższym przepływie argonu winny

Rys. 3. Fotografia przełamu warstwy SiO_x na podłożu krzemowym przygotowanej przy mocy 100 W i przepływie argonu równym: a) 20 cm³/min, b) 100 cm³/min.

Fig. 3. Cross-section of SiO_x films on Si substrate prepared for rf power used of 100 W and argon flow rate of 20 sccm (a) and 100 sccm (b).

być bardziej zwarte, a zatem lepsze jako bariery dla przepływu gazów, niż warstwy przygotowane przy przepływie 100 cm³/min. Podobne wnioski można wysnuć z wartości szerokości połówkowej piku "stretching".

Różnice w jakości warstw SiO_x przygotowanych dla przepływów 20 i 100 cm³/min wykazane metodą FTIR znajdują potwierdzenie w obserwacjach mikroskopowych. Obserwacje przełamów obu próbek wskazują na bardziej zwartą, litą mikrostrukturę warstwy przygotowanej przy przepływie argonu 20 cm³/min (Rys.3a). Przełam warstwy przygotowanej przy przepływie 100 cm³/min jest, jak gdyby ziarnisty lub gąbczasty (Rys.3b), a zatem wydaje się być bardziej przepuszczalny dla gazów.

Opisane wyżej obserwacje mikrostruktury warstw wytworzonych przy przepływach argonu równych 20 i 100 cm³/min znajdują potwierdzenie w wartościach przepuszczalności tlenu przez warstwy na podłożach z folii PET o grubości 80 μ m (Tabela 10). Jak widać, w obu przypadkach przepuszczalność jest istotnie niższa, aniżeli dla folii nie pokrytej, jednakże większą barierowością charakteryzuje się warstwa wytworzona przy niższym przepływie argonu, co by potwierdzało wcześniejsze sugestie wynikające z badań metodą FTIR.

Tabela 10. Przepuszczalność tlenu warstw SiO_x wytworzonych przy mocy 100 W z targetu kwarcowego w funkcji przepływu argonu.

Table 10. Oxygen transmission rate of SiO_x films prepared from an oxide target for 100 W rf power used as function of argon flow rate.

Przepływ argonu,	Przepuszczalność tlenu,	Wartość parametru x w cząsteczo		
cm ² /min	$cm^3/m^2 x 24h x 0,1MPa$	SI	O _x	
		FTIR	RBS	
20	1,6	1,9	2,0	
100	3,2	2,0	2,0	
Folia nie pokryta	49,9			
warstwą SiO _x				

W ocenie wzrokowej, warstwy wytworzone na folii PET dla obu przepływów argonu wydają się być jednakowo przezroczyste i bezbarwne, co potwierdza ocena przepuszczalności dla światła w zakresie 300-800 μ m, wykonana z zastosowaniem spektrofotometru Beckman UV 5270. Wykonane pomiary wskazują ponadto, iż nałożenie warstwy tlenku o grubości 100-110 nm na folię PET zupełnie nie zmienia przepuszczalności światła wykazywanej przez folię nie pokrytą (Rys. 4-5). Warstwy wytworzone w obu omawianych warunkach są zatem przezroczyste dla światła w badanym zakresie długości fal.

Z przyczyn organizacyjnych, próby wytwarzania warstw SiO_x z wykorzystaniem targetu metalicznego przeprowadzono przy zastosowaniu aparatu ULVAC. Jest to

Rys. 4. Przeświecalność w zakresie światła widzialnego folii PET o grubości 80 μ m z warstwą SiO_x wytworzoną z targetu kwarcowego przy mocy 100 W i przepływie argonu 100 cm³/min.

Fig. 4. Transparency vs wavelength of SiO_x film on 80 μ m thick PET substrate prepared for rf power of 100 W and argon flow rate of 100 sccm.

urządzenie wyposażone w przestarzały system zarówno pomiaru ciśnienia w komorze roboczej, jak co najważniejsze, w niedoskonały system zasilania w gazy robocze: argon i tlen, polegający na tym, iż otwarcie zaworów cechowane jest w niemianowanych działkach podobnych do opisu pokrętła śruby mikrometrycznej. Stąd też wynikła konieczność uprzedniego przecechowania stopnia otwarcia zaworu na odpowiadającą mu zmianę ciśnienia w komorze roboczej.

Fig. 5. Transparency vs wavelength of uncoated 80 μ m. thick PET substrate.

H.Tomaszewski, G.Gawlik, M.Możdżonek, A.Jagoda, K.Góra

Ze względu na docelowe podłoże (folia PET) wszystkie próby osadzania przeprowadzano przy mocy 100 W. Wartość parametru x w cząsteczce SiO_x starano się zmieniać poprzez regulację stopnia otwarcia zaworu doprowadzającego tlen do komory roboczej. Próby te wykazały, iż zakres otwarcia zaworu tlenowego, przy którym powstaje warstwa niestechiometryczna, oceniana wzrokowo po barwie i po wartościach położenia piku streching, jest szczególnie wąski (Rys.6). Jak można zauważyć, szybkość osadzania warstw SiO_x (S) pozostaje prawie niezmienną dla stosunku ciśnień parcjalnych tlenu do argonu, dających warstwy stechiometryczne lub bliskie stechiometrycznym (patrz wartości położenia piku stretching oznaczone na wykresie literą L), natomiast intensywnie wzrasta dla niskich przepływów tlenu, gdzie warstwy stają się niestechiometryczne.

Rys. 6. Szybkość osadzania warstw SiO_x (S) i położenie piku stretching (L) w funkcji stosunku ciśnień parcjalnych tlenu i argonu.

Fig. 6. Deposition speed of SiO_x film (S) and Si-O-Si stretch peak position (L) vs ratio of oxygen and argon partial pressure.

Tabela 11. Zestawienie warunków przygotowania warstw SiO_x na podłożach z PET aparatem ULVAC.

Numer próbki	Liczba dzia	łek otwarcia	Czas	Ciśnienie w
_	zav	voru	pompowania,	komorze
			min	roboczej, tor
	tlenowego	argonowego		
P-2	7	6	120	1x10 ⁻²
P-3	2,5	7	120	$4x10^{-3}$
P-4	2	$6^{\frac{2}{3}}$	120	4x10 ⁻³
P-5	2	$6^{\frac{2}{3}}$	210	$3,5 \times 10^{-3}$
P-6	2	$6^{\frac{2}{3}}$	25	5×10^{-3}
P-7	2	$6^{\frac{2}{3}}$	60	4x10 ⁻³
P-8	2	$6^{\frac{2}{3}}$	120	$4x10^{-3}$

Table 11. Conditions of SiO_x film preparation on PET substrate (ULVAC system).

W oparciu o opisane wyżej doświadczenia naniesiono warstwy SiO_x na folię PET. W Tabeli 11 zestawiono warunki w jakich przygotowano warstwy, zaś w Tabeli 12 ich charakterystykę metodami FTIR, RBS praz przepuszczalność warstw dla tlenu (ich barierowość).

Jak widać z Tabeli 12, warstwy próbek P-2, P-3, P-6, P-7 i P-8 są warstwami stechiometrycznymi wg metody RBS, zaś bliskimi stechiometrycznym wg oceny metodą FTIR. Ich przepuszczalność dla tlenu jest około 50 razy mniejsza aniżeli folii nie pokrytej, bez względu na grubość warstwy, przynajmniej w zakresie badanych grubości (od 47 do 146 nm). Warstwy na próbkach P-4 i P-5 są wyraźnie niestechiometryczne zarówno w świetle metody RBS, jak i FTIR. Jak się okazuje ich barierowość jest podobna jak warstw stechiometrycznych, co potwierdza opinię Felta [11], zupełnie zaś jest niezgodna z wynikami Kruga [9]. Jednoznaczna ocena wpływu niestechiometrii SiO_x na jej barierowość wymaga jednak ponownego sprawdzenia dla większej populacji próbek badanych. **Tabela 12.** Charakterystyka warstw SiO_x metodami FTIR i RBS oraz ocena barierowości warstw dla tlenu.

Table 12. FTIR, RBS and oxygen transmission rate characteristics of SiO_x films prepared by ULVAC system.

Nr próbki	Położenie pików FTIR, cm ⁻¹		Grubość warstwy,	Wartość parametru x w		Przepuszczal- ność tlenu, cm ³ /m ² x ² /hx	
						0,1 MPa	
					FTIR	RBS	
P-2	1060	815	452	146	1,9	2,0	2,4
P-3	1057	816	452	107	1,85	2,0	1,8
P-4	1016			110	1,2	1,0	1,2
P-5	1042	816	451	93	1,4	1,5	1,5
P-6	1056	814	454	47	1,85	2,0	1,7
P-7	1057	816	462	63	1,85	2,0	0,8
P-8	1054	817	450	68	1,85	2,0	-

Przepuszczalność dla światła widzialnego warstw stechiometrycznych (P-2, P-3, P-6, P-7 i P-8) jest podobna jak warstw wytworzonych z targetu kwarcowego (Rys.4). Wyraźna niestechiometria warstw próbek P-4 i P-5 istotnie zmienia przeświecalność folii (Rys.7-8). Warstwy te już w ocenie wzrokowej są wyraźnie żółtawe (próbka P-5) lub intensywnie pomarańczowe (P-4).

Rys. 7. Przeświecalność próbki P-5 w zakresie światła widzialnego.

Fig. 7. Transparency vs wavelength of P-5 sample.

Rys. 8. Przeświecalność próbki P-4 w zakresie światła widzialnego.

Fig. 8. Transparency vs wavelength of P-4 sample.

5. PODSUMOWANIE

Uzyskano warstwy tlenków SiO_x metodą sputteringu z targetu tlenkowego i metalicznego na podłożach folii PET, jako warstw barierowych obniżających przepuszczalność folii dla tlenu i pary wodnej.

Okazało się, iż warstwy SiO_x otrzymane z targetu tlenkowego (kwarcowego) niezależnie od stosowanej mocy i wielkości przepływu argonu są stechiometryczne i w pełni przeźroczyste dla światła widzialnego. Znaczne przepływy argonu (100 cm³/ min) prowadzą do powstania warstw bliskich stechiometrycznym w świetle metody FTIR, bez utraty jednakże transparencji.

Regulowalną niestechiometrię warstw SiO_x w bardzo wąskim zakresie przepływów tlenu uzyskano z targetu metalicznego. Wyraźna niestechiometria warstw, oceniana metodami FTIR i RBS, a objawiająca się żółtym lub pomarańczowym zabarwieniem, istotnie wpływa na obniżenie przepuszczalności warstw dla światła widzialnego. Wykonane pomiary barierowości warstw SiO_x dla tlenu wykazały, iż warstwy o grubości od 40 do 150 nm, niezależnie od stopnia niestechiometrii, obniżają ~ 50-krotnie przepuszczalność tlenu w porównaniu z folią nie pokrytą.

Uzyskane wyniki pozwalają na jednoznaczne stwierdzenie, iż warstwy tlenkowe na foliach do pakowania żywności wielokrotnie obniżają przepuszczalność dla tlenu, dzięki czemu możliwym jest istotne przedłużenie trwałości pakowanych produktów spożywczych.

BIBLIOGRAFIA

- Misiano C., Simonetti E., Menichella S., Stafetti F., Taglioni G.: Society of Vacuum Coaters, 36-th Annual Technical Conference Proceedings, 1993, 269-277
- [2] Phillips R.W., Marketens T., Le Gallee C., ibid, 1993, 293-301
- [3] Missiano C., Simonetti E., Cerolini P., Staffetti S., Taglioni G., Pasqui A., Fusi F., ibid, 307-311, 1993
- [4] Kelly R.S.A., ibid, 1993, 312-317
- [5] Klemberg-Sapieha J.E., Martinu L., Kuttel O.M., Wertheimer M.R., ibid, 1993,445-449,
- [6] Kelly R.S.A., Society of Vacuum Coaters, 37-th Annual Technical Conference Proceedings, 1994, 144-149
- [7] Hoffman G., ibid, 1994, 155-160
- [8] Schiller S., Neumann M., Morgner H., Sciller N., ibid, 1994, 203-211
- [9] Krug T.G., Society of Vacuum Coaters, 33-rd Annual echnical Conference Proceedings, 1990, 163-169
- [10] Komatsu K., Yamamori T., Miyabayashi T., Suzuki T., Matsumori K., ibid, 1990, 184-193
- [11] Felts J.T., ibid, 1990, 184-193
- [12] Sieck P., ibid, 1990, 233-236
- [13] Pai P.G., Chao S.S., Takagi Y., J. Vac. Sci. Technology, A4, (3), 1986, 689-694
- [14] Kaiser W., Keck P.H., Lange C.F., Phys. Rev., 1956, 101, 1264
- [15] Nakamura M., Mochizuki Y., Usami K., Stoh Y., Nozaki T., Solid State Com., 50, 2, 1984, 1079-1081
- [16] Adams A.C., Solid State Techn., April, 1983, 135-139

SIO_x BARRIER FILMS ON PET SUBSTRATES FOR FOOD PACKAGING

SUMMARY

The aim of the work was obtaining thin films of SiO_x on PET substrates prepared by sputtering from metallic and oxide targets, used as an oxygen and water vapour barriers. The films were analyzed by X-ray, RBS, FTIR and SEM. It was found that SiO_x films on PET of 80 µm thick decrease the permeation of oxygen about 50 times in comparison to uncoated PET, independently to degree of stoichiometry and film thickness in ranges studied. However the degree of stoichiometry was responsible for transparency decrease of PET coated.