DŚRODEK Naukowo-Produkcyjny Materiałów Półprzewodnikowych Warszawa

PRACE ONPMP

BADANIE WPŁYWU WARUNKÓW ŁĄCZENIA CERAMIKI KORUNDOWEJ Z METALEM NA KINETYKĘ TWORZENIA SIĘ WARSTWY SPINELOWEJ

WŁASNOŚCI I ZACHOWANIE SIĘ WARSTW NIKLOWYCH W ZŁĄCZACH CERAMIKA-METAL Autorzy pragną serdecznie podziękować mgr *H. Kozłowskiej* i mgr *M. Pawłowskiej* za wykonanie badań za pomocą sondy elektronowej i mikroskopu scanningowego.

YA HEAT AND

OŚRODEK NAUKOWO-PRODUKCYJNY MATERIAŁÓW PÓŁPRZEWODNIKOWYCH

Wanda CUBER, Władysław WŁOSIŃSKI

BADANIE WPŁYWU WARUNKÓW ŁĄCZENIA CERAMIKI KORUNDOWEJ Z METALEM NA KINETYKĘ TWORZENIA SIĘ WARSTWY SPINELOWEJ

Wacław MUSZKAT, Władysław WŁOSIŃSKI

WŁASNOŚCI I ZACHOWANIE SIĘ WARSTW NIKLOWYCH W ZŁĄCZACH CERAMIKA-METAL

KOLEGIUM REDAKCYJNE

Redaktor Naczelny: Bolesław JAKOWLEW Z-ca Redaktora Naczelnego: Paweł DRZEWIECKI

Redaktorzy Działowi: Jan BEKISZ Bohdan CISZEWSKI Zenon HORUBAŁA Andrzej HRUBAN Czesław JAWORSKI Edward SZABELSKI Andrzej TACZANOWSKI Władysław WŁOSIŃSKI

"Sekretarz Redakcji: Krystyna GÓRSKA

Adres Redakcji: ul. Konstruktorsk**a** 6, 02-673 Warszawa tel. 43-74-61, 43-54-24

WPM "WEMA" – 250+25 egz. – Zam. 170/78-Z/C Druk: "WEMA" – Zam. 237/78

Wanda CUBER, Władysław WŁOSINSKI

BADIANIE WPŁYWU WARUNKÓW ŁĄCZENIA CERAMIKI KORUNDOWEJ Z MIETALEM NA KINETYKĘ TWORZENIA SIĘ WARSTWY SPINELOWEJ

1. WPROWADZENIE

W związku z dużym zastosowaniem połączeń ceramika korundowa -metal, m.in. w obudowach do diod mocy i tyrystorów, do układów scalonych i hybrydowych, do elementów mikrofalowych i optoelektronicznych oraz w różnego rodzaju przepustach, prowadzone są badania nad ustaleniem takich warunków prowadzenia procesów łącze nia ceramiki z metalem, które zapewniłyby oprócz wymaganych parametrów elektrycz nych złączy również ich wysoką wytrzymałość mechaniczną.

Wytrzymałość mechaniczna złączy zależy w mniejszym stopniu od składu chemicznego warstwy metalicznej, głównie natomiast od rozkładu naprężeń w kształtce ceramicznej i wytrzymałości warstwy pośredniej. Warstwa pośrednia powstająca podczas spiekania ceramiki korundowej z metalem MoMn to nowa faza pod względem chemicznym i strukturalnym, wprowadzająca do układu ceramiczno-metalowego dodatkowe naprężenia skurczowe i termiczne.

Wydaje się, że szczegółowe badania warstw pośrednich, m.in. analiza mechanizmu i kinetyki jej tworzenia, powinny umożliwić dokładniejszą interpretację powstawania złączy ceramika metal.

2. STAN ZAGADNIENIA

W literaturze brak jest jednoznacznych danych o warunkach i kinetyce tworzenia faz przejściowych między ceramiką korundową i warstwą metaliczną MoMn. Wynika to z różnorodności stosowanych warunków technologicznych i różnej biografii podłoży ceramicznych. Struktura i skład chemiczny fazy pośredniej oraz przebieg zjawisk dyfuzyjnych w układzie ceramika warstwa pośrednia metal na pewno zależy od wielkości i struktury ziarn ceramiki, rozkładu składników szklistych, obecności domieszek itd. Wielkości te ściśle wiążą się z samą technologią ceramiczną, m.in. techniką formowania i warunkami spiekania.

W procesie metalizacji tworzy się między ceramiką korundową i warstwą metaliczną MoMn spinel manganawoglinowy MnAl₂O₄. Jest związkiem decydującym, w opinii

Pincusa [1] i Hiroty [2], o trwałości połączenia warstwy metalicznej z podłożem ceramicznym. Według Hiroty [2] spinel tworzy się w warstwie przejściowej ceramika--MoMn w zakresie temperatur 1300–1350°C w początkowych stadiach procesu metalizacji.

Wzrost temperatury oraz czasu spiekania powoduje zmniejszenie stężenia spinelu w fazie przejściowej, co wywołane jest rozpuszczeniem spinelu w składnikach szklistych ceramiki. Zjawisku temu towarzyszy obniżenie stałej sieci MnAl₂O₄ związane z wydy-

fundowywaniem jonów manganawych z pozycji tetraedrycznych i migracją ich poprzez

fazę szklistą do wnętrza ceramiki. Hirota nie wykrył spinelu w temperaturach powyżej 1400°C.

Inną interpretację zjawisk przedstawia Jirkovský [3,4]. Według jego badań spinel MnAl₂O₄ tworzy się w warstwie pośredniej już w temperaturze 1200°C.

Wzrost temperatury spiekania powoduje rozwinięcie strefy reakcji. Przesuwa się ona w głąb ceramiki do ok. 40 µm w 1450°C.

Ważną sprawą jest określenie wpływu składników szklistych na przebieg reakcji w układach ceramika metal. Frenkel [5] przeprowadził badania produktów przejściowych między warstwą metalu MoMn i ceramiką korundową o czystości 94,4%, 97,6% Al₂O₄ oraz monokryształu rubinu. Spiekanie warstwy metalicznej prowadzono w wilgotnej /pkt.rosy +30°C/ atmosferze gazu ochronnego N2/H2 /3:1/ w zakresie temperatur

1350-1400°C z przetrzymaniem w temperaturze maksymalnej - 1 h. Podczas spiekania na ceramice 94,4% tworzyła się warstwa polikrystaliczna złożona z tabliczkowych kryształów spinelu o wymiarach 4-6μm , przestrzeń między ziarnami zapełniona była znaczną ilością /do 7%/ fazy szklistej.

Warstwa przejściowa na ceramice 97,6% również składała się z agregatu ziaren spinelu gęsto upakowanych. Stwierdzono minimalną ilość fazy amorficznej. W przypadku rubinu nie udało się w pełni zidentyfikować fazy przejściowej za pomocą chemicznego i termicznego trawienia.

Migracja fazy szklistej z ceramiki do warstwy przejściowej intensyfikuje proces przenoszenia Al₂O₂ do tej warstwy w ilościach wystarczających do tworzenia spinelu.

Rozpuszczanie tlenku glinu, a także produktów reakcji między tlenkiem glinu i składnikami warstwy metalicznej w fazie szklistej jest procesem złożonym i zależnym od wielu czynników, między innymi od czasu i temperatury spiekania ceramiki, a także od udziału domieszek szkłotwórczych w ceramice.

Trudno jest analizować oddziaływanie rozpuszczonego tlenku glinu w warunkach spiekania warstwy metalicznej, bowiem spiekanie tej warstwy wywoływać może dodatkowe rozpuszczenie tlenku glinu, zwłaszcza w obecności MnO /powstałego przez utlenienie Mn z warstwy metalicznej wilgotnym wodorem/, silnie obniżającego punkt miękniecia fazy szklistej.

3. METODYKA PRACY I PROGRAM PROB I BADAN

Do badań kinetyki syntezy spinelu MnAl₂O₄ wybrano układy proszkowo-tlenkowe oraz tlenkowo-metaliczne.

4

Układ I – modelowy powinien dostarcząć informacji o syntezie spinelu, a II i III są kolejnymi zbliżeniami do warunków "rzeczywistych" tj. spiekania warstw metalicznych na podłożach ceramicznych.

Równocześnie spiekanie proszków powinno ułatwić interpretację wpływu fazy szklistej /w zestawie II i III/ na produkty spiekania.

W każdym z trzech układów zostaną przeprowadzone badania ilościowe wydajności syntezy. Bedg one podstawą do wyznaczenia równania kinetyki procesu, tj. opisania

zależności między stopniem przereagowania, temperaturą i czasem prowadzenia reakcji.

W świetle danych literaturowych [6] układy tlenkowe typu A^{II}O-B₂^{III}O₃ w obszarze dyfuzyjnym sprawdzają założenia modelu dyfuzji Wagnera, tj. "przeciwprądowej" dyfuzji kationów A² + i B² + przez międzywęzłowe pozycje tetra- i oktaedryczne sieci spinelowej.

Udział domieszek w układzie będzie modyfikował przebieg dyfuzji, zmieniając kształt równań kinetycznych.

Dla każdego z trzech układów zostaną obliczone energie aktywacji syntezy.

Przeprowadzona zostanie również próba obliczenia i zbadania rozkładu kationów w sieci spinelowej domieszkowanej żelazem w zakresie 0,1 – 0,5 mola Fe /zestaw IV/.

3.1. Przygotowanie zestawów spinelowych

Zestawy I-IV przygotowano w proporcjach odpowiadających stechiometrii reakcji, tj. 1 m MnO: 1 m Al₂O₃. W zestawie III zawartości Mo, Mn, Fe, Si odpowiadają udziałom wagowym tych składników w stosowanej masie metalicznej tj. 80% wag. Mo, 14% wag. Mn i 6% wag. FeSi, natomiast stosunek wagowy Mn : Al₂O₃ wynosi 1 m : 1 m. W zestawie IV przyjęto proporcje 1 m Al₂O₃ : 1 m MnO : /0,1 - 0,5/m Fe. Obliczenia zestawów przedstawiono w tabl.1.

Tablica 1

Al ₂ O ₃	AI 0	MnO	Mo	Mn	FeSi	Fe
cz.	97,5%	cz.	cz.	cz.	cz.	cz.
I 58,9705 II III IV 57,1555 50,8870	59,5807 21,0403	41,0295 40,4193 39,7648 35,4037	 63,1670 	11,0543	4,7384	 3,0797 13,7093

OBLICZENIA ZESTAWOW /% WAG./ DO SYNTEZY

Jako czysty tlenek glinu wzięto Al₂O₃ produkcji Zakładu Doświadczalnego Huty Aluminium w Skawinie, tlenek Al₂O₃ /97,5%/ jest masą oznaczoną symbolem Al-19 /produkowaną przez ONPMP/. Średnia wielkość ziarna Al₂O₃ wynosiła ca 9µm. Mo, Mn, FeSi - to składniki pasty metalicznej o uziarnieniu mniejszym niż 5µm; MnO otrzymano przez redukcję MnO₂ w wilgotnym wodorze /pkt. rosy + 20°C/ w temperaturze 1330°C /0,5 h/.

Mieszaniny proszków I–IV otrzymano przez łączny pięciogodzinny przemiał substratów w alkoholu etylowym w moździerzu agatowym firmy Fritscha Pulveristte[2], Z każdego typu zestawu zarabiano masę do formowania. Stosowano dodatek 10% wagowych 5--procentowego roztworu polialkoholu winylowègo.

Z mas formowano pastylki o wymiarach d=20 mm; h=3 mm na prasie hydraulicznej pod ciśnieniem 1000 kG/cm².

Przed spiekaniem przeprowadzono wstępne odpędzanie plastyfikatora w suszarce w zakresie temperatur 70-200°C w czasie do 20 h.

Pastylki poddano spiekani u w atmosferze wilgotnego wodoru /pkt. rosy +20°C/ w temperaturze T = 1200, 1250, 1300, 1350, 1400, 1450°C w czasie t = 5, 10, 20, 30, 60 i 120 minut. Spiekani e przeprowadzano w rurowym sylitowym piecu typu Carbolite z programowanym grzaniem i dokładnością temperatury +1°C w zakresie temperatur do 1350°C. Do wyższych temperatur stosowano wysokotemperaturowy piec z molibdenowymi elementami grzejnymi firmy Metals Research, typu PCA-10 z kontrolowaną szybkoś cią ogrzewania i studzenia.

Próbki, po określonym czasie t przetrzymania w żądanej temperaturze, były szybko chłodzone w tej samej atmosferze. Taki sposób postępowania miał zapewnić warunki "zamrożenia" reakcji, co ważne jest w badaniach postępu reakcji oraz rozkładu kationów w sieci spinelowej.

Według Dekkera [11] sposób przeprowadzenia spiekania spinelu oraz studzenia próbek spinelowych ma istotny wpływ na stopień inwersji MnAl₂O₄ i stabilność jego struktury /istnieje możliwość tetragonalizacji regularnej komórki wskutek częściowego utleniania Mn²⁺ do Mn⁴⁺ – efekt Jahna -Tellera/.

4. OBLICZENIA POTENCJAŁÓW TERMODYNAMICZNYCH

W celu lepszego poznania procesów zachodzących między składnikami ceramiki korundowej i składnikami pasty metalicznej Mo, Mn, Fe, Si przeprowadzono odpowiednie obliczenia potencjałów termodynamicznych niektórych prawdopodobnych reakcji chemicznych biegnących w warunkach spiekania warstw metalicznych.

W obliczeniach wykorzystano metody Evansa−Kubaschewskiego wyznaczania zależności ∆G=f/T/.

Reakcie:

$$\frac{1}{Mn} + AI_{2}O_{3} + H_{2}O = MnAI_{2}O_{4} + H_{2}$$

$$\frac{2}{Mn} + SiO_{2} + H_{2}O = MnSiO_{3} + H_{2}$$

$$\frac{3}{Fe} + AI_{2}O_{3} + H_{2}O = FeAI_{2}O_{4} + H_{2}$$

$$\frac{4}{2Fe} + SiO_{2} + 2H_{2}O = Fe_{2}SiO_{4} + 2H_{2}$$

$$\frac{5}{Mg} + AI_{2}O_{3} + H_{2}O = MgAI_{2}O_{4} + H_{2}$$

$$\frac{6}{Mg} + SiO_{2} + H_{2}O = MgSiO_{3} + H_{2}$$

$$\frac{7}{2Mg} + SiO_{2} + 2H_{2}O = Mg_{2}SiO_{4} + 2H_{2}$$

$$\frac{8}{FeSi} + 2H_{2}O = SiO_{2} + 2H_{2} + Fe$$

$$\frac{9}{Si}/Fe/stop + 2H_{2}O = SiO_{2} + 2H_{2}$$

opisywane są równaniem:

6

 $\Delta G^{\circ} = A + BTIgT + CT^{2} + DT^{-1} + JT /cal/mol/.$

Wielkości współczynników w reakcji 1-10 zostawiono w tabl. 2.

Tablica 2

Reakcja Lp.	Α	В	С	D	J	Zakres temp. /K/
1	-46520	-6,75	-0,00064	8000	27,80	800-1500
2	-38270	-6,75	-0,00064	8000	27,10	800-1500
3	-14620	-6,75	-0,00064	8000	21,99	298-1500
4	-21440	-13,50	-0,00128	16000	51,88	298-1642
5	-96920	-6,99	-0,00064	8000	35,19	923-1400
6	+33680	-6,99	-0,00064	8000	36,79	923-1400
7	-191840	-13,98	-0,00128	71,83	71,83	923-1400
8	-179340	-16,86	-0,00147	-58500	71,92	848-1642
9	-96210	-16,86	-0,00128	16000	68,89	848-1642
10	-96210	-16,86	-0,00128	16000	70,91	848-1683

WIELKOSCI WSPOŁCZYNNIKOW

W obliczeniach temperaturowych zależności potencjałów termodynamicznych reakcji wykorzystano podane przez Kubschewskiego [7] oraz Ondracka [8] swobodne energie tworzenia następujących związków:

a/ nMe /s/ + mO 2/g/ = Me n m/s/ b/ H2/g/ + 1/20 2/g/ = H2O /g/ c/ Me O m/s/ + Me O d/s/ = Me Me O m+q/s/ Potencjał reakcji 1-10 można obliczyć jako sumę potencjałów termodynamicznych

Potencjał reakcji 1-10 można obliczyć jako sumę potencjałów termodynamicznych powyższych reakcji cząstkowych a, b i c. Np. w temperaturze T₁ potencjał termodynamiczny reakcji:

$$nMe + Me O + mH_2O = Me_nMe O_{q+m} + mH_2$$

oblicza się:
$$\Delta G^{O}T_1 = n\Delta G^{O}T_{1,b} + \Delta G^{O}T_{1,c}$$

W warunkach oddalenia od równowagi tj. dla określonego składu atmosfery gazowej zależność potencjału termodynamicznego od prężności cząstkowych składników tej atmosfery wyraża się wzorem:

$$\Delta G_{T_1} = \Delta G^{\circ} T_1 + R T_1 \ln / \frac{P_{H_2}}{P_{H_2}O} /$$

Reakcja 9 odpowi ada utlenieniu żelazokrzemu w wilgotnym wodorze. Żelazokrzem jest stopem Fe-Si o zawartości ok. 25% wag. Fe. W obliczeniach uwzględniono wpływ stężenia tego roztworu stałego na stałą równowagi przyjmując, że aktywności składników roztworu odpowiadają ich ułamkom molowym /a = X / oraz aktywności czystych faz skondensowanych są równe jedności.

Wartości potencjałów termodynamicznych reakcji 1–10 w temperaturach 1000, 1300, 1500 i 1600 K w warunkach równowagi oraz dla atmosfery wilgotnego wodoru /pkt. rosy +20°C/ przedstawiono w tablicy 3.

http://rcin.org.pl

7

Z obliczeń wynika, że spinel manganawo-glinowy jest związkiem termodynamicznie trwałym w zakresie temperatur 1000-1500 K w atmosferze wilgotnego wodoru.

Reakcją konkurencyjną jest synteza krzemianu manganawego MnSiO2 między tlenkiem manganawym /powstałym przez utlenienie metalicznego manganu w wilgotnym wodorze/ i dwutlenkiem krzemu. Wartości potencjałów obydwu reakcji wskazują, że mogg one zachodzić w tych samych warunkach.

Nie można również wykluczyć tworzenia związków kilkuskładnikowych pomiędzy produktami reakcji, np. MnO/MgO/·Al₂O₃·SiO₂. Brak danych termochemicznych nie pozwala na przeprowadzenie odpowiednich obli-

czeń. /tabl.3/.

Tablica 3

Reakcja	10	00 K	130	0 K	1500	ОК	160	0 K
	∆ G ⁰ 1000	ΔG 1000	ΔG ⁰ 1300	AG 1300	۵G [°] 1500	AG1500	4G°1600	∆G1600
1	-39618	-32219	-38786	-29167	-38411	-27313		
2	-32052	-24653	-31406	-21787	-31212	-20113		
3	-13512	-6113	-13512	-4779	-15227	-4128		
4	-20142	-5644	-16747	+2491	-10803	+11394		
5	-83332	-75933	-80509	-70890	- 78869	-67771		
6	+48868	+56267	+52171	+61789	+54130	+65229		
7	-163214	-148416	-156538	-137298	-155229	-133029	-154351	-130634
8	-160529	-145729	-76969	-60368	-76166	-57011	-75576	-55144
9	-79164	-66394	-157133	-137896	-153564	-131367		
10	-77134	-62334	-74330	-55090	-73121	-50921	-72328	-48648

POTENCJAŁY TERMODYNAMICZNE REAKCJI 1-10 /cal/mol/

Dla porównania z syntezą spinelu manganawego wykonano obliczenia dla spinelu

MgAl₂O₄ – reakcja 5, w podobnym układzie reagentów. Wyniki obliczeń syntezy MnAl₂O₄ są potwierdzeniem danych doświadczalnych redukcji spinelu wodorem.

Otrzymana przez Leneva [9] empiryczna zależność stałej równowagi K od temperatury dla takiej reakcji /MnAl₂O₄ + H₂ = Mn + H₂O + Al₂O₃/ odpowiada obli-czonym wartościom potencjału termodynamicznego reakcji 1.

$$\log K_{p}[9] = \frac{-10650}{T} + 1,9994$$

Wydaje się, że reakcje 1-10 limitowane są utlenieniem reagenta metalicznego wilgotnym wodorem. Z danych literaturowych [10] wynika, że w zakresie rozpatrywanych temperatur i dla wybranego składu atmosfery gazowej trwałe są związki: MnO, MgO, SiO₂, Al₂O₂. Tlenek żelazawy w takich warunkach ulega redukcji do metalicznego żelaza. Trwałość glinianu żelaząwego w tych warunkach potwierdzałaby informacje o wbudowywaniu się kationów Fe² do sieci spinelu manganawego, czyli tworzeniu połączeń typu MnO · FeO · Al O3.

Przeprowadzone obliczenia dla glinianu żelazawego /reakcja 3/ nie są jednozna-. czne, bowiem otrzymane wyniki wartości potencjałów termodynamicznych w punkcie rosy +20°C porównywalne są z wielkością błędu /rzędu kilokalorii/ danych termochemicznych otrzymywanych eksperymentalnie.

Zjawisko "wbudowywania" żelaza do sieci spinelowej może być inaczej interpretowane. Ziarna żelaza, obecne w warstwie metalicznej, mogą wnikać do ciekłego szkliwa /zwigzanie mechaniczne/ i wraz z nim migrować do ceramiki poprzez fazę pośrednią, powodując ewentualne rozpuszczenie fazy spinelowej. W celu wyjaśnienia procesów zachodzących w warstwie spinelowej przygotowano zestaw IV; MnO cz. - Al₂O₂ cz.-

- Fe cz., w którym zostaną przeprowadzone badania rozkładu kationów w sieci spinelowej oraz pomiary stałych sieci MnAl₂O₄ w temperaturach odpowiadających spiekaniu warstw metalicznych.

Chociaż wartości obliczonych potencjałów termodynamicznych wskazują na potencjalną siłę napędową procesów w danym układzie, to jednak nie mówią nic pewnego o jego kinetyce.

Obserwowana szybkość reakcji będzie zależeć w rzeczywistości także od tzw. oporów kinetycznych, których miarą jest przede wszystkim energia aktywacji. Dodatkowo obliczono potencjały termodynamiczne tworzenia się tlenków molibdenu według następujących reakcji:

$1/M_{o}/s/ + 3H_{2^{*}}/g/ = M_{o}O_{3}/s/ + 3H_{2/g}/s$	298 - 1068 K
$2/Mo/s/ + 3H_2O/g/ = MoO_3/g/ + 3H_2/g/$	1068 - 1500 K
$3/Mo/s/ + 2H_2O/g/ = MoO_2/s/ + 2H_2/g/$	298 - 2000 K

Po podstawieniu danych do równań otrzymano:

$\Delta G_T^{o}/1/= -11860 - 29,11 \text{ T lgT} - 0,00192 \text{ T}^2 + 24000 \text{ T}^{-1} + 116,29\text{ T};$
$\Delta G_{T}^{o}/2/= -8980 - 56,59 \text{ T } \text{ IgT} - 0,00192 \text{ T}^{2} + 24000 \text{ T}^{-1} + 193,89 \text{ T};$
$\Delta G_{T}^{0}/3/=-28620-23,22 \text{ T } \text{ IgT } -0,00128\text{ T}^{2}+16000 \text{ T}^{-1}+91,87 \text{ T};$

Obliczone wartości potencjałów termodynamicznych zestawiono w tablicy 4. Wartości potencjałów termodynamicznych reakcji /1/ – /3/ w warunkach równowagi oraz dla atm. wilgotnego wodoru – pkt. rosy + 20°C w temp. 1000 – 1600 K

Tablica 4

/cal/mol/

Reakcja	1000) K	1300 K		1500 K		1600 K	
	∆G [°] 1000	ΔG1000	∆G [°] 1300	AG1300	∆G [°] 1500	∆G1500	4G°1600	AG1600
1 2 3	+15204 +13244 -7674	+57443 +35483 +7126	- +11057 -5218	- +39968 +14022	- +7617 -4443	- +40976 +17757	- - -3781	- - -19898

Dla porównania z potencjałami termodynamicznymi tworzenia się tlenków molibdenu podobne obliczenia wykonano dla tlenków tytanu według czterech następujących reakcji:

$$1/Ti_{s/} + H_2O_{g/} = TiO_{s/} + H_{2/g/}$$

/298 - 2000 K/

http://rcin.org.pl

9

 $2/2Ti_{s} + 3H_2O_{a} = Ti_2O_3/s + 3H_2/a/s$ /298 - 2000 K/ $3/\text{Ti}_{s/} + 2\text{H}_2\text{O}_g/=\text{TiO}_{2/s/} + 2\text{H}_{2/g/}$ /298 - 1150 K/ $4/\text{Ti}_{s} + 2H_2O_{g} = \text{Ti}O_{2/s} + 2H_{2/g}$ /1150 - 2000 K/ Obliczenia wykonano ze wzorów

 $\Delta G_{T}^{0}/1/=-78670-10,33$ TlgT - 0,00069 T² + 8000T⁻¹ + 42,91 T; $\Delta G_{T}^{o}/2/=-206510 - 35,03T I_{g}T - 0,00192T^{2} + 24000 T^{-1} + 145,22 T;$ $\Delta G_{T}^{o}/3/=-114500 - 26,30T I_{g}T + 0,00039T^{2} + 213500T^{-1} + 100,29 T;$ $\Delta G_{T}^{0}/4/=-114520-21,12T \text{ IgT}-0,00092T^{2}+181500T^{-1}+85,91 \text{ T};$

Obliczone wartości zestawiono w tabl. 5

Potencjały termodynamiczne reakcji 1-4 w warunkach równowagi oraz dla punktu rosy H2 /+20°C/ w cal/mol

Tablica 5

Reakcja	1000 K		1300 K		1500 K		1600 K	
	4G°1000	ΔG1000	∆G [°] 1300	ΔG1300	ΔG [°] 1500	ΔG1500	∆G [°] 1.600	∆G1600
1	-67382	-59969	-65727	-56090	-65014	-53895	-64537	-52676
3	-92749	-77923	-1025//	-155000	-1000//	-120717	-130412	-122030
4	-	-	-89640	-70366	-88346	-66107	-87440	-63718

Jak widać z obliczeń wielkości potencjałów termodynamicznych tlenki tytanu TiO, Ti₂O₂ iTiO₂ mogą się łatwo tworzyć i występować w całym zakresie spiekania warstw métalicznych na ceramice korundowej. Nie będą się natomiast tworzyć tlenki molibdenu, co pozostaje w zgodności z pracami stwierdzającymi brak dyfuzji molibdenu do podłoża ceramicznego w czasie spiekania warstw metalicznych.

5. WYNIKI PROB TECHNOLOGICZNYCH

Dla wszystkich próbek wykonano oznaczenia porowatości i gestości objętościowej metodą ważenia hydrostatycznego /wg BN-73/6460-14/ oraz wyznaczono skurczliwość liniową poprzez mierzenie zmian wielkości średnicy próbek śrubą mikrometryczną. Wyniki oznaczeń przykładowo dla zestawu II i III przedstawiono w tabl.6. Próbki spinelowe poddane zostały rentgenowskim badaniom ilościowym^{X/}.

Wstępnie przeprowadzona analiza substratów wykazała:

x/Pomiary wykonano w Pracowni Rentgenograficznej Z-1.

Tablica 6

Temp. / C/ t /1	min/	Gęstość obj. g/cm	Porowatość p /2/	Skurczliwość s %
1200°C	5	2,14	58,5	-7,3
	10	2,18	54,0	-6,9
	20	2,25	46,5	-6,4
	30	2,30	41,5	-5,6
	60	2,39	40,5	-4,4
	120	2,40	40,1	-3,7
1250°C	5	2,27	38,1	-6,8
	10	2,35	36,0	-6,2
	20	2,40	35,3	-5,0
	30	2,53	32,7	-4,1
	60	2,75	30,1	-2,0
	120	2,80	29,4	+0,5
1300°C	5	2,78	31,1	+1,5
	10	2,87	28,0	+2,1
	20	2,98	24,0	+3,0
	30	3,01	24,1	+3,8
	60	3,03	21,1	+4,3
	120	3,05	21,1	+4,5
1350°C	5	2,86	16,0	+3,0
	10	2,87	16,0	+3,2
	20	2,91	15,6	+3,7
	30	2,94	13,9	+4,5
	60	3,15	12,0	+4,8
	120	3,21	11,8	+4,9
	Zestaw III			
1200°C	5	3,84	38,9	-2,4
	10	3,90	35,5	-1,8
	20	3,94	30,0	-1,5
	30	3,95	24,3	-1,0
	60	4,35	18,9	+0,5
	120	4,65	17,3	+1,8
1250°C	5	4,45	28,1	+2,2
	10	4,52	24,7	+2,5
	20	4,60	18,9	+3,3
	30	4,73	13,0	+3,7
	60	4,91	10,8	+4,0
	120	4,96	9,3	+4,1

WYNIKI POMIAROW PROBEK WYKONANYCH Z ZESTAWU II i III

cd. Tabl. 6

Temp. / °C/t /min/	Gęstość obj . g/cm	Porowatość p/2/	Skurczliwość s%
5	4,90	10,8	+3,8
10	4,99	8,4	+4,5
20	5,09	6,3	+5,1
1300 C 30	5,23	5,8	+6,0
60 120	5,37	5,3	+9,1
	5,41	5,2	+9,8
5	5,40	6,0	+9,5
10 10	5,45	5,5	+10,3
20 20	5,47	5,4 05	+10,7
1350 C 30	5,50	4,3 00	+11,1
0.5- 60	5,54	4,1 00	+11,3
120	5,60	4,1	+11,4

- otrzymany MnO jest tlenkiem regularnym, dość czystym, zanieczyszczenia stanowią pojedyncze linie;

- tlenek glinu w masie Al-19 odpowiada w pełni liniom ASTM dla & - Al₂O₂;

- żelazo stosowane w zestawie IV jest czystym & - Fe;

 żelazokrzem FeSi wykazuje linie Si, nie zdołano zidentyfikować Fe, co może być spowodowane jego zanieczyszczeniem;

- spieczenie żelazokrzemu w warunkach spiekania warstw MoMnFeSi /1330°C; 15 min, atm. wil. H,/ powoduje utlenienie krzemu do SiO,, natomiast Fe pozostało niezidentyfikowane ² /analiza chemiczna żelazokrzemu stosowanego w pastach metalicznych podaje 25% wag. Fe/.

6. WSTEPNE WYNIKI ANALIZ FAZOWYCH PROBEK SPINELOWYCH X/

Pojedyncze, słabe linie spinelu MnAl₂O₄ pojawiają się już w próbce spieczonej w 1000 C/5 min. Próbka spiekana w 1350 ²/60 min zawiera spinel, ślady Al₂O₃ /2 linie/, 1 linia MnO.

Rozdrobnienie tej próbki w moździerzu agatowym w alkoholu etylowym powoduje rozmycie i zniekształcenie dyfraktogramu m.in, zanika linia MnO. Wygrzanie próbki w 600°C/60 min w wilgotnym wodorze daje wyraźniejsze linie spinelu.

Próbka spiekana w 1200°C/5 min zawiera spinel, Al₂O₃ /3 linie/.
Próbka spiekana - 1200°C/5 min w wilgotnym wodorze zanieczyszczonym azotem na barwę ciemnobrązową. Mniejszy stopień przereagowania w porównaniu z próbką spiekaną w temperaturze 1200°C przez 5 min w czystym wodorze. Wykryto spinel Al 23

/4 linie/.

×/ Wykonane przez mgr K.Majchra z Z-1.

7. WNIOSKI

1. Spinel manganawo-glinowy tworzy się /zestaw II/ już w temperaturze 1000[°]C/ /5 min w wilgotnym wodorze /pkt. rosy +20[°]C/, co potwierdza przewidywania teoretyczne /p.4/.

2. Wzrost temperatury i czasu przetrzymywania intensyfikuje reakcję syntezy. W temperaturze 1350°C osiąga się /zestaw II/ znaczne stopnie przereagowania /wartości oszacowane wizualnie/.

Próbki spinelowe są czułe na zmiany i zanieczyszczenia atmosfery spiekania.
 Zanieczyszczenie wodoru azotem pogarsza stopień przemiany, linie spinelu są słabsze, barwa próbki staje się ciemnobrązowa /czysty MnAl₂O₄ jest jasnożółty/.
 Próbki zestawu II i III wykazują w zakresie temperatur 1200–1250 C rozszerzal-

4. Próbki zestawu II i III wykazują w zakresie temperatur 1200–1250°C rozszerzalność: maksymalnie 7,3% /II/ i 2,4% /III/. Może to być spowodowane przegrupowaniem [12] struktury 0 – Al₂O₂.

5. Próbki zestawu II i III ²spieka się w 1350°C/120 min do gęstości objętościowej d = 3,21 g/cm²/II/i d = 5,6 g/cm²/III/.

6. Obserwowana przez niektórych autorów segregacja składników pasty metalicznej w czasie spiekania tej warstwy pozostaje w ścisłej zależności z wielkością potencjałów termodynamicznych tworzenia się tlenków składników pasty oraz związków tych tlenków z tlenkami glinu.

LITERATURA

- 1. Pincus A.G.: J.Am. Ceram. Soc. 36/15/, 1953
- 2. Hirota M.: Trans. JIM 9, 1968
- 3. Jirkovský V.: Slaboproudý obzor, 33, 1968
- 4. Jirkovský V.: Tesla electronics 4, 1976
- 5. Frenkel E.: Fiziczeska chimija powierchnostnych jawlenij pri wysokich temperaturach, Kijów, 1971, 276
- 6. Kononiuk I.: Geterogennyje chimiczeskie reakcji i reakcjonna sposobnosť, Minsk 1975
- 7. Kubaschewski O.: Metallurgical Termochemistry, 1967
- 8. Ondracek G.: Sprechsaal, /108/ 3-4, 1975
- 9. Lenev L.: Izv. Akad, Nauk, SSSR, Metaly, /3/ 1966
- 10. Rochow H.: Ber. Dtsch. Keram. Ges. 44/1967/
- 11. Dekker E.: Z. anorg. allg. Chem. 415, 69-80, 1975
- 12. Itaru Y.: J. Ceram. Soc. Jap. 82, 950, 1974

SPIS TRESCI

BADANIE WPŁYWU WARUNKOW ŁĄCZENIA CERAMIKI KORUNDOWEJ Z METALEM NA KINETYKĘ TWORZENIA SIĘ WARSTWY SPINELOWEJ

1.	Wprowadzenie	3
2.	Stan zagadnienia	3
3.	Metodyka pracy i program prób i badań	4
	3.1. Przygotowanie zestawów spinelowych	5
4.	Obliczenia potencjałów termodynamicznych	6
5.	Wyniki prób technologicznych	10
٤.	Wstępne wyniki analiz fazowych próbek spinelowych	12
7.	Wnioski	13
Lit	eratura	14

II. WŁASNOŚCI I ZACHOWANIE SIĘ WARSTW NIKLOWYCH W ZŁĄCZACH CERAMIKA-METAL

1.	Wprowadzenie	15
2.	Niklowanie warstw metalicznych MoMn na podłożu ceramicznym w zastosowaniu do złączy z metalem	15
3.	Opis stosowanych próbek i metod badawczych oraz program prób	19
4.	Badania strukturalne warstw przejściowych	20
5.	Wyniki prób wytrzymałościowych	21
6.	Podsumowanie uzyskanych wyników i wnioski końcowe	22
Li	iteratura	24