INSTYTUT TECHNOLOGII MATERIAŁÓW ELEKTRONICZNYCH

PRACE

ANALIZA WOLFRAMU I TANTALU ZA POMOCĄ SPEKTROGRAFU MASOWEGO ZE WZBUDZENIEM ISKROWYM

Zeszyt 1

.

2

INSTYTUT TECHNOLOGII MATERIAŁÓW ELEKTRONICZNYCH

Jacek BUKOWSKI Wiesława DĘBSKA Wanda MUSIJOWSKA Wojciech VIETH

ANALIZA WOLFRAMU I TANTALU ZA POMOCĄ SPEKTROGRAFU MASOWEGO ZE WZBUDZENIEM ISKROWYM

Wydawnictwa Przemysłu Maszynowego WEMA http://rcin.org.pl

KOLEGIUM REDAKCYJNE

Redaktor Naczelny: Bolesław JAKOWLEW Z-ca Redaktora Naczelnego: Paweł DRZEWIECKI

Redaktorzy Działowi: Jan BEKISZ Bohdan CISZEWSKI Zenon HORUBAŁA Andrzej HRUBAN Czesław JAWORSKI Edward SZABELSKI Andrzej TACZANOWSKI Władysław WŁOSIŃSKI

Sekretarz Redakcji: Krystyna GÓRSKA

Adres Redakcji: ul. Konstruktorska 6, 02-673 Warszawa tel. 43-74-61, 43-54-24

Wolfram i tantal stosowane są w różnych działach przemysłu elektronicznego. Wolfram stosuje się między innymi do wyrobu wsporników elektrod oraz katod w kineskopach i lampach elektronowych, złącz próżnioszczelnych w lampach nadawczych dużej mocy, antykatod rentgenowskich, wysokoprądowych elementów stykowych podkładek dylatacyjnych tyrystorów. Prócz tego używa się go do nie zużywających się elektrod spawalniczych, elektrod do świec zapłonowych, elementów grzewczych pieców elektrycznych, żyroskopów oraz osłon promieniotwórczych. Tantal jest stosowany w produkcji kondensatorów elektrolitycznych, tyrystorów i lamp elektronowych. Jest on ponadto używany jako getter a także do wyrobu tygli, dysz, elementów aparatury technologicznej narażonych na korozję oraz narzędzi chirurgicznych i w ortopedii.

Każde z powyższych zastosowań wymaga użycia materiałów o odpowiedniej czystości. Cba metale jako pierwiastki wysokotopliwe są stosunkowo trudne do analizy. Jedną z uniwersalnych metod oznaczania zanieczyszczeń w próbkach stałych jest spektrografia masowa ze wzbudzeniem iskrowym [1 - 5]. Niniejsza praca dotyczy wykorzystania tej techniki do analizy jakościowej i ilościowej wolframu i tantalu. Zawiera ona, oprócz omćwienia ogólnych zasad procedury analitycznej, przykładowe spisy linii izotopowych powstających na płytach fotograficznych eksponowanych wolframem i tantalem oraz przykłady analiz, ocenę statystyczną wyników i granice wykrywalności dowolnych zanieczyszczeń w obu materiałach.

2. OTRZYMYWANIE WIDMA MASCWEGO NA PŁYTACH FOTOGRAFICZNYCH

2.1. Aparatura

Do analiz używany był spektrograf mas JMS-01 B/M produkcji japońskiej firmy JECL. Jest to przyrząd o dwukrotnym ogniskowaniu typu Mattaucha-Herzoga z iskrowym źródłem jonów.

Pomiędzy elektrody z analizowanego materiału przykładane jest napięcie przemienne o częstotliwości 1 MHz w postaci impulsów o długości kilkudziesięciu mikrosekund i regulowanej powtarzalności 10 Hz – 10 kHz. W wyniku następuje wyładowanie próżniowe powodujące odparowanie, atomizację i jonizację wszystkich składników próbek. Powstałe jony, po przejściu przez elektrostatyczny analizator energii, wchodzą do magnetycznego analizatora pędu, w którym następuje rozdział strumienia jonów na poszczególne wiązki izotopowe. Szczegółowy opis zasady działania spektrografu i ogólny opis przeprowadzania analizy podano w pracy [6].

Rozdzielone przestrzennie wiązki izotopowe padają na płytę fotograficzną powodując powstanie linii, których położenie określa rodzaj jonów, zaś zaczernienie – ich liczbę. W celu otrzymania krzywej charakterystycznej emulsji płytę eksponuje się kilkunastokrotnie różnymi ładunkami całkowitymi. Po wywołaniu płyty transmitancje linii mierzy się za pomocą densytometru JMD-BD-1. Przy założeniu, że skład plazmy odpowiada składowi analizowanego materiału można oznaczyć zawartoś-

http://rcin.org.pl

3

ci poszczególnych zanieczyszczeń w próbkach. Cbliczenia końcowe i pomocnicze wykonywano za pomocą minikomputera JEC-6.

Waltom stoute ale mindey how

2.2. Przygotowanie próbek

Sposób przygotowania próbek zależy od natury fizycznej materiału analizowanego. Inaczej przygotowuje się próbki z materiału litego, a inaczej z proszku. Cdmiennie też postępuje się przygotowując do analizy cienkie warstwy [7].

2.2.1. Przygotowanie próbek z materiału litego

Jeśli materiał do analizy pochodzi z laboratorium prowadzącego topienie strefowe, można już w aparaturze uzyskać przez umiejętny dobór warunków topienia cienką laseczkę, z której po prostu odłamuje się elektrody. Niepotrzebne jest wówczas jakiekolwiek oczyszczanie powierzchni. Jeśli jednak takie sprzyjające okoliczności nie zachodzą, wycina się elektrody narzędziami o ostrząch widiowych lub diamentowych. Typowe wymiary elektrody wynoszą 20x2x2 mm³. Po takiej operacji konieczne jest staranne oczyszczenie powierzchni. Składa się ono z kilku operacji:

- oczyszczenie mechaniczne szlifowanie i polerowanie do uzyskania równej powierzchni,
- elektropolerowanie zdejmujące grubą warstwę powierzchniową wraz z zanieczyszczeniami pozostałymi po obróbce mechanicznej,
- trawienie powierzchni elektropolerowanej w mieszaninie stężonych kwasów /HNO₃:HF = 1:3/, usuwające zanieczyszczenia wydzielone na powierzchni w trakcie elektropolerowania,
- płukanie w wodzie dejonizowanej,
- suszenie pod promiennikiem podczerwieni.

Samo trawienie wolframu i tantalu w mieszaninie kwasów nie wystarcza ze względu na odporność chemiczną tych materiałów – nawet długotrwałe trawienie nie powoduje zdjęcia dostatecznie grubej warstwy powierzchniowej [7]. Do trawienia po elektropolerowaniu należy użyć kwasów wysakiej czystości. Wszystkie operacje muszą być wykonywane w naczyniach z teflonu lub polietylenu. Również szczypce, którymi chwyta się oczyszczone próbki, muszą być pokryte tymi materiałami.

2.2.2. Przygotowanie próbek proszkowych

Proszek wolframowy lub tantałowy miesza się z grafitem spektralnie czystym albo z czystym proszkiem złota lub srebra w stosunku:

1 część proszku wolframowego na 1 ÷ 5 części proszku łączącego. Mieszaninę ujednorodnia się w moździerzu przez około dwie godziny, a następnie prasuje w matrycy stalowej wyłożonej teflonem lub w specjalnej osłonie z polietylenu pod ciśnieniem 1000 ÷ 2000 atm. Jeśli prasowanie przeprowadza się w matrycach stalowych bez warstwy ochronnej, należy wypraskę oczyścić nożem tantalowym lub poddać obróbce nożem diamentowym. Na koniec próbkę przełamuje się w środku i umocowuje w źródle jonów spektrometru w taki sposób, aby wyładowanie następowało między powierzchniami świeżego przełomu. Wypraski można ráwnież wykonać z czystego proszku /bez łącznika w rodzaju grafitu/, ale trzeba je koniecznie wzmocnić przez spiekanie w wysokiej temperaturze. Nie spieczone wypraski są tak kruche i mechanicznie niestabilne, że nie można ich umocować w uchwytach. Zrozumiałe jest jednak, że spiekanie może spowodować znaczny błąd oznaczania pierwiastków lotnych.

Próbki z materiału litego i sprasowane z proszków trzeba /pomimo starannego obchodzenia się z nimi w czasie przygotowywania/ poddawać ostatecznemu oczyszczaniu "przediskrzając" je w spektrometrze przed wykonaniem właściwych ekspozycji.

2.2.3. Przygotowanie cienkich warstw powierzchniowych

Cienkie warstwy powierzchniowe nakłada się w taki sam sposób jak w normalnej technologii. Podłoże musi cechować wysoka czystość – może to być grafit spektralnie nie czysty lub krzem półprzewodnikowy. Trzeba tu zwrócić szczegćiną uwagę na czystość operacji uzyskiwania warstwy, gdyż niemożliwa jest jakakolwiek obróbka mechaniczna lub chemiczna próbek tego rodzaju. Oczyszczanie próbek przez przediskrzenie także jest niewłaściwe.

Wszystkie próbki trzeba chronić przed przypadkowym, wtórnym zanieczyszczeniem. Próbki mogą być dotykane tylko szczypcami wyłożonymi teflonem lub polietylenem, zaś przechowywać je należy w boksach bezpyłowych.

2.3. Parametry pracy spektrografu i wywoływania płyt fotograficznych

Przed eksponowaniem płyt wnętrze źródła jonów oczyszczono starannie papierem ściernym. Elementy szczelin wytrawiono w wodzie królewskiej i wypłukano w wodzie dejonizowanej, a następnie źródło i cały spektrograf wygrzewano przez 8 godzin w temperaturze 150°C. Parametry pracy spektrografu podane są w tabeli 1.

Tabela 1

1	Napięcie anodowe tyratronu	5 kV	
2	Częstotliwość impulsów	10 kHz	
3	Szerokość impulsu	20 Jus	
4	Napięcie przyśpieszające jony	25 kV	
5	Natężenie prądu wzbudzającego pole magnetyczne	4,4 A	
6	Napięcie w analizatorze elektrostatycznym	2,5 kV	
7	Szerokość szczeliny głównej	30 µm	
8	Szerokość szczeliny 🗸	0,2 mm	
9	Szerokość szczeliny B	0,4 mm	
10	Przediskrzenie do ładunku	10-8C	

OPTYMALNE PARAMETRY PRACY SPEKTROGRAFU

Do detekcji jonów zostały użyte płyty Ilford Q2. Każda płyta została poddana dwudziestokilkakrotnej ekspozycji. Ładunek maksymalny wynosił 1·10⁻⁷C, następne zmniejszały się regularnie wg schematu: 3·10⁻⁸C, 1·10⁻⁸C, 3·10⁻⁹C... 3·10⁻¹³C. Zastosowano następujące warunki wywoływania płyt fotograficznych:

- skład wywoływacza:

woda	1500 ml
metol	3,4 g
siarczyn sodowy bez	wodny 108,0 g
hydrochinon	13,2 g
weglan sodu bezwoo	Iny 72,0 g
bromek potasu	6,0 g

/Temperatura wody nie powinna przekraczać 50°C. W trakcie rozpuszczania należy zachować podaną kolejność dodawania składników/

- czas wywoływania 2,5 min
- temperatura wywoływania 20°C ±0,5°C
- skład utrwalacza:
 - woda

1500 ml

tiosiarczyn sodowy pirosiarczyn sodowy – czas utrwalania 455 g 50 g około 6 min 20°C

- temperatura utrwalania

3. ANALIZA JAKOSCIOWA

Na płytach eksponowanych wolframem lub tantalem pojawiają się linie izotopowe pochodzące od pojedynczo i wielokrotnie naładowanych jonów jednoatomowych, linie jonów wieloatomowych i kompleksowych, linie powstające na skutek zmiany ładunku jonów w obszarze analizatorów oraz linie pochodzące z gazu resztkowego /powietrza i par oleju/ w aparaturze. Przeciętnie na jednej ekspozycji o ładunku całkowitym 10⁻⁷C znajduje się 300 ± 500 linii, tym więcej im bardziej zanieczyszczona jest próbka. Przy zdolności rozdzielczej spektrografu powyżej 2000 koincydencje są stosunkowo rzadkie.

Analizę jakościową przeprowadza się zaczynając od dużych mas. Notuje się systematycznie wszystkie linie dokonując przyporządkowania danym liniom wartości stosunków masa/ładunek oraz rozpoznając rodzaje jonów powodujących powstanie linii. W niektórych przypadkach, gdy analiza jest szczególnie trudna, mierzy się odległość pomiędzy liniami za pomocą komparatora, a następnie oblicza ich masy stosując wzory podane w pracy [6]. Z uzyskanych w ten sposób zestawów /np. tabela 10/ wybiera się linie przydatne do fotometrowania.

4. ANALIZA ILOSCIOWA I PRECYZJA OZNACZEN

Analiza ilościowa widma masowego opiera się na wykorzystaniu sygnału analitycznego – zaczernienia linii B % lub jej przepuszczalności /transmitancji/ T = /100 – B/%, a następnie przeliczeniu tej wartości na gęstość jonów. Zaczernienie linii jest bowiem proporcjonalne do logarytmu liczby jonów padających na powierzchnię płyty. Krzywą charakterystyczną jonoczułej emulsji Q2 jest wykres funkcji F/T/ = f /1g Q/, gdzie F/T/ jest dowolną funkcją transmitancji, a Q – całkowitym ładunkiem jonów /Q = AE, gdzie E – ekspozycja jonowa, A – abundancja/.

Po założeniu, że liczba jonów danego rodzaju wytworzonych w czasie iskrzenia jest wprost proporcjonalna do liczby odpowiednich atomów znajdujących się welektrodach oraz, że rozkład jonów pomiędzy poszczególne stopnie jonizacji jest dla wszystkich pierwiastków danej substancji podobny, można, porównując transmitancję linii substancji macierzystej /składnika głównego/ z transmitancją linii zanieczyszczeń, określić stosunek liczby jonów /atomów/ pierwiastka zanieczyszczenia do liczby jonów /atomów/ składnika głównego, a więc stężenie atomowe zanieczyszczeń. Porównania takiego dokonuje się metodą densytometryczną.

Obliczenia są wykonywane za pomocą maszyny cyfrowej /minikomputera/JEC-6. Program obliczeniowy służący do analizy ilościowej płyty został przedstawiony w pracy [8]. Zastosowano w nim funkcję przetworzenia transmitancji F/T/, zaproponowaną przez Franzena, Schuya i Maurera [9] i uzupełnioną w naszym laboratorium [8].

$$F/T/ = Ig\left\{\left[\frac{100 - T_s}{T - T_s}\right]^{\frac{1}{\nabla}} - I\right\} + \frac{C}{100}\left\{\left[\frac{100 - T_s}{T - T_s}\right]^{\frac{1}{\nabla}} - I\right\}$$
/1/

http://rcin.org.pl

6

T₂ - transmitancja nasycenia w % /0 - 9/

- V szerokość rozkładu statystycznego średnic ziaren AgBr w emulsji /0,5 ÷
 ÷ 20/
- C parametr empiryczny /0 7/.

Zależność tej funkcji transmitancji F/T/ od logarytmu ładunku jonów jest w przybliżeniu linią prostą.

Przykładowy przebieg takich prostych dla kilku różnych pierwiastków zawartych w analizowanym materiale /np. w wolframie/ zamieszczony jest na rysunku 1.

Rys. 1. Przykładowe wykresy zależności F/T/ = lg AE dla różnych pierwiastków

Tabela danych programu zawiera wszystkie informacje o pierwiastkach potrzebne do obliczeń: symbol, liczbę atomową, liczbę izotopów, ciepło sublimacji, przekrój czynny atomu na zderzenie z elektronami, potencjały jonizacji, masy atomowe poszczególnych izotopów oraz ich abundancję.

Dla każdej mierzonej płyty za pomocą dalekopisu wpisuje się wartości kolejnych ekspozycji E /w kulombach/ oraz założone wartości T_s , V, C i tzw. B początkowego B · B_p jest typowym współczynnikiem kierunkowym prostych podanych na rysunku l. Zawiera się on na ogół w przedziale 0,6 ÷ 1,2, założnie od punktów doświadczalnych oraz przyjętych wartości parametrów T_s , V i Č. Następnie, po kolei dla każdego pierwiastka, wpisuje się liczbę atomową, numery izotopów wziętych do pomiarów oraz numery ekspozycji i odpowiadające im wartości transmitancji mierzone za pomocą fotometru. Z danych tych maszyna określa parametry wyznaczające położenie prostej:

$$y = a + bx$$
 /2/

dla zbioru punktów x. = F/T/, y. = Ig A·E dla każdego pierwiastka k. W równaniu 2 a oznacza punkt przecięcia prostej z osią x, zaś b jest współczynnikiem kierunkowym równym tangensowi kąta nachylenie prostej względem osi x, jak na rysunku 2.

Do wyznaczenia zależności F/T/2 = a + b lg AE zastosowano procedurę regresji prostoliniowej z wagami punktów. Parametr b_k danego pierwiastka k można określić ze wzoru:

$$b_k = \frac{cov xy_k}{var x_k} /3/$$

zaś parametr a_L z zależności:

$$a_k = \bar{y}_k - b\bar{x}_k$$
 /4/

gdzie: x i y są średnimi ważonymi zmiennych x i y dla danego pierwiastka k.

n=15

Aby określić parametry prostej dla pierwiastka k maszyna liczy \bar{x}_k i \bar{y}_k , a następnie var x_k , var y_k , cov xy_k według wzorów:

var
$$x_k = \frac{\sum_{i=1}^{n_k} w_i /x_i - \bar{x}_k/2}{\frac{n_k - 1}{n_k - 1}}$$

http://rcin.org.pl

8

$$var y_{k} = \frac{\sum_{i=1}^{n_{k}} w_{i} / y_{i} - \bar{y}_{k} / 2}{\frac{n_{k} - 1}{n_{k} - 1}}$$
 /8/

$$cov xy_{k} = \frac{\sum_{i=1}^{n_{k}} w_{i} / x_{i} - \bar{x}_{k} / / y_{i} - \bar{y}_{k} /}{n_{k} - 1} / 9 /$$

które podstawia się do wzorów 3 i 4.

Wagi punktów w. określane są jako odwrotności wariancji funkcji przetworzenia transmitancji F/T/:

$$w_{i} = \frac{1}{\frac{2}{s_{i}^{2}}/F/}$$
 /10/

przy czym:

$$s_{i}^{2}/F = \left[\frac{dF/T}{dT}\right]^{2} s_{i}^{2}/T / /11/$$

gdzie: $s_i^2/T/= var T$, jest wariancją transmitancji zmierzoną dla danej wartości transmitancji.

Tabela wartości wariancji transmitancji dla całego zakresu transmitancji 1 \div 100% jest wprowadzona do tabeli danych programu. Zależność ta została określona doświadczalnie na drodze pomiarów transmitancji linii izotopowych powstałych na płycie eksponowanej 30 razy tym samym ładunkiem. Dla wybranych 138 linii o określonej transmitancji uzyskano po 30 pomiarów, a wyniki obliczeń statystycznych posłużyły do określenia zależności var T = f/T/. Podajemy ją niżej w formie tabeli 2, a także pod postacją wykresu na rysunku 3.

Tabela 2

WARTOSCI WARIANCJI TRANSMITANCJI W FUNKCJI TRANSMITANCJI

Τ%	var T	Τ%	var T	T%	var T
1	0,19	34	1,06	67	4,54
2	0,20	35	1,15	68	4,46
3.	0,21	36	1,23	69	4,40
4	0,23	37	1,33	70	4,35
5 .	0,23	38	1,41	71	4,27
6 -	0,24	39	1,53	72	4,16
7	0,25	40	1,63	73	4,08
8	0,27	41	1,75	74	4,04
9	0,28	42	1,90	75	3,95
10	0,30	43	2,03	76	3,86
11 .	0,30	44	2,19	77	3,87
12	0,32	45	2,40	78	3,65
13	0,34	46 .	2,50	79	3,60
14	0,36	47	2,64	80	3,50
15	0,38	48	2,80	81	3,40
16	0,40	49	2,95	82	3,30
17	0,41	50	3,18	83	3,24
18	.0,43	51	3,35	84	3,13
19	0,46	52	3,50	85	3,06
20	0,49	. 53	3,65	86	2,95
21	0,51	54	3,84	87	2,85
22	0,53	55	4,04	88	2,80
23	0,57	56	4,22	89	2,70
24	0,60	57	4,44	90	2,60
25	0,63	58	4,49	91	2,50
26	0,67	· 59	4,76	92	2,40
27	0,71	. 60	4,80	93	2,32
28	0,75	61	4,81	94	2,25
29	-0,80	62	4,80	95	2,18
30	0,85	63	4,76	96	2,10
31 ,	0,90	64	4,70	97	2,00
32	0,95	65	4,65	98	1,94
33	1,00	66	4,60	99	1,88

Po obliczeniu parametrów prostej regresji maszyna dodatkowo oblicza współczynnik indeterminacji 1 – r / 1 % %/. Symbol r oznacza współczynnik korelacji, którego kwadrai jest tzw. współczynnikiem determinacji określonym wzorem:

$$r^{2} = \frac{/\operatorname{cov} xy/^{2}}{\operatorname{var} x \operatorname{var} y} \quad 100\% \qquad /12/$$

Współczynnik indeterminacji jest miarą niedopasowania punktów do linii prostej. Stanowi on dla analityka, informację o precyzji oznaczania pierwiastka k z danej płyty fotograficznej.

W programie obliczeniowym uwzględniona też została cenzura /odrzucanie/ punktów odległych. Maszyna oblicza w tym celu wariancję punktów doświadczalnych względem linii regresji:

$$\operatorname{var} \hat{y}_{k} = \frac{\sum_{i=1}^{n_{k}} w_{i} / y_{i} - a_{k} - b_{k} x_{i} / 2}{n_{k} - 2}$$
 /13/

dla wszystkich n, punktów oraz ponownie bez najodleglejszego np. I-tego, dla którego wyrażenie $y_1 - a_k - b_k x_1$ jest największe. Zastosowano test F-Snedecora dla porównania dwóch wariancji var \hat{y} dla n_k oraz n_k - 1 punktów. Jeśli wariancje te różnią się statystycznie /przy założonym prawdopodobieństwie 1 - d = 0,9/ wtedy punkt I-ty jest odrzucany, a procedurę powtarza się dla następnego najodleglejszego punktu, aż do momentu gdy dwie porównywane wariancje przestają się różnić.

Po wykonaniu powyższych oblicżeń maszyna "zapamiętuje" dla każdego pierwiastka k:

gdzie:

$$var b_{k} = \frac{\frac{var y_{k}}{\sum_{i=1}^{n_{k}} w_{i} / x_{i} - \overline{x}_{k} / 2}}{\sum_{i=1}^{n_{k}} w_{i} / x_{i} - \overline{x}_{k} / 2}$$

W następnym etapie obliczana jest średnia wartość współczynników regresji b, narzucana w dalszych obliczeniach wszystkim m pierwiastkom:

$$\bar{b} = \frac{\sum_{k=1}^{m} b_k \cdot \frac{1}{\operatorname{var} b_k}}{\sum_{k=1}^{m} \frac{1}{\operatorname{var} b_k}} /15/$$

Wartości b oraz zbiór punktów $/\bar{x}_k, \bar{y}_k/$ wyznaczają rodzinę prostych równoległych jak na rysunku 4.

Dla wszystkich m pierwiastków oblicza się następnie wartości /lg A·E/, w punktach przecięcia tych prostych z linią y=y., gdzie:

$$y_{j} = \frac{\sum_{k=1}^{m} \bar{y}_{k} n_{k}}{\sum_{k=1}^{m} n_{k}} /16/$$

Jak widać z powyższego wzoru y jest średnią ważoną wszystkich wartości y dla których wagami są liczby punktów pomiarowych każdej serii k.

W ostatniej fazie obliczeń maszyna odlogarytmowuje obliczone wartości odciętych, a następnie wykorzystuje je do obliczenia stężenia atomowego pierwiastków wg wzoru:

Rys. 4. Proste równoległe F/T/ = Ig AE wyznaczone przez b oraz punkty x_{1} , y_{1}/x_{2} , y_{2}/x_{3}

$$c/\frac{z}{s} = \frac{A E/s}{A E/z} \cdot \frac{1}{RSF/\frac{z}{z}} \cdot 10^{6} \text{ ppm at} \qquad (17/z)$$

gdzie indeks s oznacza standard wewnętrzny, zaś z zanieczyszczenie. Przeliczenia stężenia atomowego na wagowe można dokonać posługując się wzorem:

c /ppm wag./ = c /ppm at./
$$\frac{M_z}{M_{skl.gl.}}$$
 /18/

w którym M_z jest masą atomową danego zanieczyszczenia, zaś M_{skł.gł} jest masą atomową odpowiednio wolframu lub tantalu. Wzór 18 jest słuszny przy założeniu, że wolfram lub tantal stanowią praktycznie 100% próbki. Błąd obliczenia, jaki powstaje w wyniku tego założenia, jest do pominięcia, jeśli ilość zanieczyszczeń w materiale jest na poziomie 10^{-2%} lub mniejszym.

Wielkość RSF/z/ we wzorze 17 jest względnym czynnikiem czułości dla pierwiastków z oraz s znanym z doświadczenia lub obliczonym teoretycznie według wzoru:

$$RSF/\frac{z}{s}/=\left[\frac{\Delta}{\Delta}\frac{H_{s}}{H_{z}}\right]^{P}\left[\frac{Q_{z}}{Q_{s}}\right]^{q}\left[\frac{\beta}{\beta}_{z}\right]^{r}\left[\frac{M_{s}}{M_{z}}\right]^{t}$$

/19/

gdzie: AH – entalpia sublimacji

Q - przekrój czynny

Ø – potencjał jonizacji

M - masa jonu

p, q, r, t - wykładniki potęg określone empirycznie.

Doświadczalne czynniki RSF dla określonego materiału i danego spektrometru określić można analizując próbki wzorcowe, przy czym:

$$RSF / \frac{z}{s} / = \frac{stężenie zmierzone pierwiastka z}{stężenie pierwiastka z we wzorcu /wg atestu/} /20/$$

Ponieważ w naszym laboratorium nie mamy wzorców wolframu i tantalu o gwarantowanej jednorodności i wiarygodnych atestach, czynniki RSF zostały obliczone dla obu materiałów teoretycznie ze wzoru 19, przy czym wartości wykładników potęg przyjęto wg Vidala i współpracowników [10] jako p=q=t=1 i r=4. Pomimo stosowania tak obliczonych poprawek, trzeba liczyć się z błędem systematycznym oznaczeń, sięgającym 100 - 200% wartości mierzonej. Z tego względu spektrografię masową należy traktować jako metodę półilościową, przydatną przede wszystkim do analiz porównawczych.

Błąd przypadkowy oznaczeń można oszacować wykonując sukcesywnie kilka analiz tej samej próbki i obliczając odchylenie standardowe s:

$$= \sqrt{\frac{\sum_{i=1}^{n} /c_i - \bar{c}/^2}{n-1}}$$
/21/

lub względne odchylenie standardowe RSD:

$$RSD = \frac{s}{c} /22/$$

gdzie: c_i – wyniki kolejnych oznaczeń danego pierwiastka

c – średnia arytmetyczna serii oznaczeń

n - liczba pomiarów.

Na obliczone odchylenie standardowe danego zanieczyszczenia składają się dwa błędy: wariancja s² związana z samą spektrografią masową jako metodą analityczną oraz wariancja s² charakteryzująca jednorodność rozmieszczenia oznaczanego pierwiastka w analizowanym materiale. Stąd s można przedstawić jako:

$$s = \sqrt{\frac{2}{s_{met}}} + \frac{2}{s_{an}}$$
 /23/

W oparciu o wielokrotnie przeprowadzane w naszym laboratorium pomiary tego rodzaju, możemy wnioskować, że względne od chylenie standardowe związane z samą metodą RSD wynosi około 0,1. Stąd miarą jednorodności rozmieszczenia danego zanieczyszczenia w analizowanej próbce może być w ejkość RSD zan. zgodnie ze wzorem: $\sqrt{s^2 - c^2}$

$$RSD_{zan.} = \frac{\sqrt{s^2 - \frac{c}{100}}}{\frac{c}{c}} /24/$$

5. GRANICA WYKRYWALNCSCI

W literaturze specjalistycznej znajdują się liczne prace związane z "wykrywalnością", "gwarancją czystości" lub np. "graniczną detekcją" zanieczyszczeń śladowych za pomocą różnych metod analitycznych [np. 12 - 15]. Na podstawie tych prac, a także wyników licznych pomiarów przeprowadzonych w ITME została opracowana nowa definicja granicy wykrywalności, przystosowana do spektrografii masowej [11]. Opiera się ona na określeniu takiego sygnału o minimalnej wielkości, który może być zmierzony' ze z góry założonym prawdopodobieństwem na tle o danej wartości. Mierzonym sygnałem znajdującym się na płycie fotograficznej jest transmitancja T_{t+1} linii izotopowej w tle. Wykres krzywej charakterystycznej emul-

sji, przedstawiający graficznie zależność między sygnałem T a logarytmem ładunku jonów Ig Q = Ig AE podany jest na rysunku 5. Zaznaczono na nim wartości transmitancji T_t tła i transmitancji T_{t+ł} linii na tle oraz odpowiadające im ładunki G_t oraz Q_{t+l}. Ten ostatni ładunek jest równy ładunkowi Q_{min} = AE_{min}, występującemu w podanym dalej wzorze na granicę wykrywalności.

Rys. 5. Krzywa charakterystyczna jonoczutej emulsji

Zgodnie z procedurą zastosowaną w programie obliczeniowym analizy ilościowej płyty, zależność transmitancji T od logarytmu ładunku można, stosując funkcję przetworzenia F/T/, przedstawić w postaci linii prostej. Po dokonaniu tej operacji wykres przedstawiony na rysunku 5 zmienia się w wykres jak na rysunku 6.

Zmiana ΔT transmitancji odpowiadająca linii, którą można zauważyć na danym tle, równa jest:

$$\Delta T = T_{t} - T_{t+\ell}$$
 /25/

126/

Przyrost $\triangle T$ musi być z jednej strony dostatecznie duży, aby przypadkowe wahania tła /szum / nie były uznane za linię, ale z drugiej strony dostatecznie mały, aby właściwego sygnału pierwiastka nie uznać za szum. Tak więc $\triangle T$ musi stanowić jakąś statystycznie wybraną wielokrotność błędu s pomiaru transmitancji T_t tła oraz transmitancji T_{t+1} linii w tle:

$$\Delta T = k \cdot s$$

Jako miarę błędu znalezienia linii w tle przyjęto pierwiastek z sumy wariancji transmitancji tła linii na tle:

14

$$s = \sqrt{\frac{2}{s_{T}^2} + \frac{2}{s_{T}^2}}$$

stqd:

$$\Delta T = k \sqrt{\frac{2}{s_{T}} + \frac{2}{s_{T}}} / \frac{2}{t} / \frac{2}{t}$$

Z porównania wzorów 20 i 23 wynika:

$$T_{t} - T_{t+1} = k \sqrt{s_{T_{t+1}}^{2} + s_{T_{1}}^{2}}$$
 /29/

czyli:

Rys. 6. Przetworzona krzywa charakterystyczna jonoczułej emulsji

Tak więc transmitancja linii już dostrzegalnej w szumie otaczającego ją tła równa jest transmitancji tła pomniejszonej o k-tą wielokrotność odchylenia standardowego s.

W rozważaniach statystycznych, zmierzających do określenia współczynnika k zakłada się w literaturze pewne wartości prawdopodobieństw:

- prawdopodobieństwo właściwego wykrycia, tzn. wykrycia sygnału pierwiastka, gdy
 jest on rzeczywiście sygnałem pierwiastka,
- prawdo, odobieństwo popełnienia błędu I rodzaju, czyli tzw. "fałszywego" wykrycia, tzn. uznania sygnału za sygnał pierwiastka, gdy jest on tylko wahnięciem tła,
- prawdopodobieństwo popełnienia błędu II rodzaju, tzn. uznanie prawidłowego sygnału pierwiastka za wahnięcie tła.

Liteanu i Riča [12], założywszy prawdopodobieństwo właściwego wykrycia równe 0,998, prawdopodobieństwo popełnienia błędu I rodzaju równe 0,002 oraz II rodzaju równe 0,001, otrzymali wartość współczynnika k równą 6. Taką samą wartość podają Svoboda i Gerbatsch [14]. Kaiser [13] zaproponował współczynnik k=3, a nawet

127/

/30/

k=2, przyznając iednak tym wsp²iczynnikom niższy poziom prawdopodobieństwa. Zauważył on, że według teorematu Czebyszewa, stosuj c K=3 można oczekiwać iedy nie prowdopodobieństwa około 89%, a stosując do obliczeń k=2 około 75%. Kaiser uzależnia przyjęcie takiej, a nie innej wartości k od konkretnych warunkćw analitycznych. Cgćlnie jednak rzecz biorąc, sugeruje wartość k=3 ako naibardziej sensowną, wiążąc z nią prawdopodobieństwo 95%.

Rozważania statystyczne prowadzone we wspomnianych wyżej pracach dotyczą decyzji wyboru sygnałów pochodzących z wykresu mikrofotometrycznego płyty, zapisanego na papierze rejestratora". W naszym laboratorium linie od tła odróżnia się bezpośrednio z płyty fotograficznej, obserwując jej powiększony obraz na matówce rzutnika mikrofotometru. Powiększony obraz linii ma charakterystyczny prostokątny kształt, który pozwala na odróżnienie od tła nawet bardzo nieznacznych zaczernień linii widmowych. Na wykresie mikrofotometrycznym linie o takim słabym zaczernieniu mogą całkiem zginąć w szumie tła. Tak więc możliwość popełnienia błędu II rodzaju /zgrubienie sygnału w szumie/ jest w przypadku procedury stosowanej w ITME mniejsze, niż w innych ośrodkach. Także prawdopodobieństwo popełnienia błędu I rodzaju /fałszywego wykrycia/ jest, ze względu na wspomniany kształt linii, prawie niemożliwe. Lepsza wykrywalność linii na płycie w porćwnanio z wykrywalnością na wykresie sugeruje oczywiście lepszą wykrywalność zanieczyszczeń, a co za tym idzie mniejszy współczynnik k. Został on określony przez nas doświadczalnie.

Na losowo wybranych płytach zmierzono pary wartości: T_{t+1} /transmitancja linii na tle o danej wartości/ oraz T_t /transmitancja otaczającego linię tła/ dla 60 bardzo słabych, ale już dostrzegalnych linii. Pomiary przeprowadzono dla różnych wartości tła. Uzyskane wyniki naniesione zostały na wykres w układzie współrzędnych T_{t+1} , T_t . Następnie przyjmując k=2, k=3, k=4 itd. wykreślono proste, odpowiadające zależności ze wzoru 30 dla całego zakresu transmitancji tła. Wyniki przedstawia rysunek 7.

Rys. 7. Porównanie zależności T_{t+1} = t/f_t/ wyznaczonej doświadczalnie /kropki/ i obliczonej wg wzoru 30 /proste dla k=2 i k=3/

Jak widać z powyższego rysunku prosta dla k=2 ogranicza od lewej strony wszystkie punkty doświadczalne, co oznacza, że przyjmując k=2 właściwie oceniamy najmniejszy przyrost AT, obserwowany przez naj jako sygnał.

Mniejszej różnicy między interesującymi nas transmitancjami T_t i T_{t+l} już nie obserwujemy. Przyjęcie k=3 spowodowałoby niepotrzebne podwyższenie granicy wykrywalności, ponieważ, jak wynika z rysunku 7 przynajmniej połowa punktów doświadczalnych, a więc słabych linii izotopowych o zmierzonej transmitancji, zostałaby uznana za szum tła.

Wyniki obliczeń T_{t+1} dla całego zakresu T_t i dla różnych k, które posłużyły do sporządzenia wykresów na rysunku 7, zostały zestawione w tabeli 3.

Program obliczeniowy maszyny cyfrowej [11] zawiera również w tabeli danych wartości s = f/T/ odchylenia standardowego pomiarów transmitancji. Wartości te, jak opisano poprzednio, zostaty uzyskane na drodze doświadczalnej. Służą one do obliczenia czynnika start + start w równaniu 30. Do obliczeń zastosowano metodę

iteracyjną ze względu na występowanie transmitancji T₊₊₁ linii w tle po obu stro-

nach równania 30. Za pomocą tego równania można obliczyć transmitancję najmniejszego dostrzegalnego i dającego się zmierzyć sygnału każdego pierwiastka, jeśli znana jest wartość T, transmitancji tła otaczającego linię pomiarową tego pierwiastka. Wartości transmitancji tła dla poszczególnych interesujących nas miejsc płyty fotograficznej odczytuje się z wykresu mikrofotometrycznego, który został załączony jako rysunek 8.

Do ostatecznego obliczenia granicy wykrywalności zanieczyszczenia k w wolframie należy:

- znaleźć wartość Q_{min} najmniejszego ładunku potrzebnego do powstania linii

o transmitancji T_{t+1} z zależności funkcyjnej $F/T/ = a \div b \lg G$, jak w równaniu 2,

podstawić otrzymane wartości do wzoru:

$$Gw = \frac{Q_{min}}{Q_{max}} \cdot \frac{1}{RSF} \cdot 10^6 \text{ ppm at} \qquad /31/$$

gdzie Gw jest granicą wykrywalności danego pierwiastka obliczoną dla określonej płyty fotograficznej,

 Q_{max} jest maksymalną ekspozycją na płycie fotograficznej, np. $Q_{max} = 10^{-6}$ C,

Q_{min} jest najmniejszym ładunkiem, który powoduje powstanie nadającej się do sfotometrowania linii izotopowej na tle, np. C_{min} = 2x10⁻¹⁵C.

Wszystkie powyższe obliczenia wykonuje maszyna cyfrowa zgodnie z ułożonym w naszym laboratorium programem "Obliczanie granicy wykrywalności" [11]. Pozwala on na szybkie obliczenie granicy wykrywalności wszystkich zanieczyszczeń w dowolnej matrycy.

Tabela 3

TRANSMITANCJA LINII NA TLE

	Tło	k=1	k=2	k=3	k=4	Tło .	k=1	k-2	k=3	k=4
9997.095.092.990.74845.743.641.539.9896.093.991.889.54744.842.740.738.9795.092.990.688.34643.941.839.938.9693.991.889.587.14542.941.039.137.9592.990.788.486.04442.040.138.336.9190.888.586.283.74240.138.436.635.9390.888.7.485.082.54139.237.535.834.9188.786.483.981.44038.336.635.033.9087.785.382.880.239'37.335.734.232.8786.683.180.577.93735.433.932.531.8784.682.179.476.83634.533.031.630.8683.581.078.375.63533.532.136.729.027.8380.477.875.072.23230.729.428.126.22.8481.578.871.768.8293028.727.526.325.8077.374.571.768.8293028.727.526.	100	98.1	96.1	94.0	91.8	49	46.7	44.5	42.4	40.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	99	97.0	95.0	92.9	90.7	48	45.7	43.6	41.5	39.6
9795.092.990.688.34643.941.839.938.9693.991.889.587.14542.941.039.137.9592.990.788.486.04442.040.138.336.9491.989.687.384.84341.139.237.535.89289.887.485.082.54139.237.535.834.9188.786.483.981.44038.336.635.033.9087.785.382.880.239'37.335.734.232.3986.684.281.779.03836.434.833.031.630.8087.785.382.880.239'35.532.130.729.22.8184.682.179.476.83634.533.031.630.32.631.8582.579.977.274.43432.631.229.922.8380.477.875.072.23230.729.428.427.226.8176.773.971.13129.728.427.226.424.427.226.48077.374.571.768.82927.826.625.424.427.923.822.721.80<	98	96.0	93.9	91.8	89.5	47	44.8	42.7	40.7	38.8
9693.991.889.587.14542.941.039.137.9592.990.788.486.04442.040.138.336.9199.687.384.84341.139.237.535.9390.888.586.283.74240.138.436.633.9188.786.483.981.44038.336.635.033.9087.785.382.880.239'37.335.734.232.3986.684.281.779.03836.434.833.331.8885.683.180.577.93735.433.931.630.8683.581.078.375.63533.532.130.729.29.8582.579.977.274.43432.631.229.027.8380.477.875.072.23230.729.428.126.8481.578.876.173.33331.630.332.927.526.325.8077.337.571.768.82927.826.625.424.23.25.8077.337.570.667.72826.825.624.523.23.721.26.624.523.7673.270.367.	97	95.0	92.9	90.6	88.3	46	43.9	41.8	39.9	38.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	96	93.9	91.8	89.5	87.1	45	42.9	41.0	39.1	37.3
9491.989.6 87.3 84.8 43 41.1 39.2 37.5 $33.$ 90.888.586.283.7 42 40.1 38.4 36.6 $35.$ 9188.7 86.4 83.9 81.4 40 38.3 36.6 35.0 $33.$ 9087.785.382.880.2 39° 37.3 35.7 34.2 $32.$ 8986.6 84.2 81.7 79.0 38 36.4 34.8 33.3 31.6 8087.785.382.880.2 39° 37.3 35.7 34.2 $32.$ 8986.6 84.2 81.7 79.0 38 36.4 34.8 39.9 32.5 31.6 8087.785.382.880.2 39° 37.3 33.0 31.6 $30.$ 8083.5 81.0 77.9 77.9 79.7 37 35.4 33.9 32.5 31.6 8083.5 81.0 78.3 75.6 35.3 33.5 32.1 30.7 29.4 $28.12.6$ 8184.6 82.1 77.8 75.0 72.2 32.2 30.7 29.4 $28.12.6$ $22.6.26$ 81 78.4 75.6 72.8 89.9 $30.28.7$ 27.5 $26.4.25.4$ $24.26.26$ 80 77.3 74.5 71.7 68.8 29 27.8 $26.6.2.62.5.4$ 22.7 80 77.3 74	95	92.9	90.7	88.4	86.0	44	42.0	40.1	38.3	36.5
9390.888.586.283.74240.138.436.633.9289.887.485.082.54139.237.535.834.9188.786.483.981.44038.336.635.033.9087.785.382.880.239'37.335.734.232.8986.684.281.779.03836.434.833.331.68083.581.075.793735.433.932.531.68086.683.180.577.93735.433.031.630.8683.581.078.375.63533.532.130.729.8582.579.977.274.43432.631.229.928.8481.576.876.173.33331.630.332.922.8582.579.977.274.43432.631.229.928.8481.576.876.072.23230.729.428.126.8279.476.773.971.13129.728.427.226.8077.373.570.667.72826.825.624.523.7875.372.469.566.62725.824.723.622.721.76 <td>94</td> <td>91.9</td> <td>89.6</td> <td>87.3</td> <td>84.8</td> <td>43</td> <td>41.1</td> <td>39.2</td> <td>37.5</td> <td>35.8</td>	94	91.9	89.6	87.3	84.8	43	41.1	39.2	37.5	35.8
9289.887.485.082.54139.237.535.834.9188.786.483.981.44038.336.635.033.9087.785.382.880.239'37.335.734.232.3986.684.281.779.03836.434.883.331.8885.683.180.577.93735.433.932.531.8784.682.179.476.83634.533.031.630.8683.581.078.375.63533.532.130.729.8582.579.977.274.43432.631.229.928.8481.578.876.173.33331.630.329.027.8380.477.875.072.23230.729.428.126.8178.475.672.869.93028.727.526.325.8077.374.571.768.82927.826.625.424.7975.372.469.566.62725.824.723.622.721.7673.270.367.364.32523.922.821.820.7572.269.266.363.22422.921.920.919.77 <td>93</td> <td>90.8</td> <td>88.5</td> <td>86.2</td> <td>83.7</td> <td>42</td> <td>40.1</td> <td>38.4</td> <td>36.6</td> <td>35.0</td>	93	90.8	88.5	86.2	83.7	42	40.1	38.4	36.6	35.0
9188.786.483.981.44038.336.635.033.9087.785.382.880.239'37.335.734.232.8986.684.281.779.03836.434.833.331.8784.682.179.476.83634.533.031.630.8683.581.078.375.63533.532.136.729.8582.579.977.274.43432.631.229.928.8481.578.876.173.33331.630.329.027.8380.477.875.072.23230.729.428.126.8178.475.672.869.93028.727.526.325.58077.374.571.768.82927.826.625.424.76.373.570.667.72826.825.624.523.7673.2,70.367.364.32523.922.821.820.7572.266.363.22422.921.920.919.7471.168.265.262.12322.020.919.7471.168.265.262.12322.020.919.7772.266.363.22422.9<	92	89.8	87.4	85.0	82.5	41	39.2	37.5	35.8	34.3
90 87.7 85.3 82.8 80.2 39° 37.3 35.7 34.2 $32.$ 89 86.6 84.2 81.7 79.0 38 36.4 34.8 33.3 31.8 87 84.6 82.1 79.4 77.9 37 35.4 33.9 32.5 31.6 87 84.6 82.1 79.4 76.8 36.4 34.5 33.0 31.6 30.0 86 83.5 81.0 78.3 75.6 35 33.5 32.1 30.7 $29.$ 85 82.5 79.9 77.2 74.4 34 32.6 31.2 29.9 $28.$ 84 81.5 78.8 76.1 73.3 33 31.6 30.3 29.0 $27.$ 83 80.4 77.8 75.0 72.2 32.3 30.7 29.4 28.1 22.9 $28.$ 81 78.4 75.6 72.8 69.9 30.2 28.7 27.5 26.3 $25.$ 80 77.3 74.5 71.7 68.8 29 27.8 26.6 24.5 23.7 76 73.2 70.6 67.7 28.2 28.8 24.7 23.6 22.7 21.7 74.2 71.4 68.4 65.4 26.6 24.9 23.8 22.7 $21.76.7$ 75.2 26.2 62.3 62.2 22.9 21.9 20.9 19.7 77.2 69.2 <td< td=""><td>91</td><td>88.7</td><td>86.4</td><td>83.9</td><td>81.4</td><td>40</td><td>38.3</td><td>36.6</td><td>35.0</td><td>33.5</td></td<>	91	88.7	86.4	83.9	81.4	40	38.3	36.6	35.0	33.5
$\delta9$ 86.6 84.2 81.7 79.0 38 36.4 34.8 33.3 $31.$ 88 $\beta5.6$ 83.1 80.5 77.9 37 35.4 33.9 32.5 $31.$ 87 84.6 82.1 79.4 76.8 36 34.5 33.0 31.6 30.0 86 83.5 81.0 78.3 75.6 35 33.5 32.1 30.7 29.8 85 82.5 79.9 77.2 74.4 34 32.6 31.2 29.9 28.8 84 81.5 78.8 76.1 73.3 33 31.6 30.3 29.0 27.8 80.4 77.8 75.0 72.2 32 30.7 29.4 28.1 26.8 82 79.4 76.7 73.9 71.1 31 29.7 28.4 27.5 26.3 25.6 81 78.4 75.6 72.8 69.9 30 28.7 27.5 26.3 25.6 24.5 23.2 80 77.3 74.5 71.7 68.8 29 27.8 26.6 25.4 24.2 24.7 23.8 22.7 23.8 22.7 23.8 22.7 23.8 22.7 23.8 22.7 23.8 22.7 23.8 22.7 23.8 22.7 23.8 22.7 23.8 22.7 23.8 22.7 23.8 22.7 23.8 22.7 23.8 22.7 23.8 22.7 </td <td>90</td> <td>87.7</td> <td>85.3</td> <td>82.8</td> <td>80.2</td> <td>39'</td> <td>37.3</td> <td>35.7</td> <td>34.2</td> <td>32.7</td>	90	87.7	85.3	82.8	80.2	39'	37.3	35.7	34.2	32.7
88 $\beta 5.6$ $\beta 3.1$ $\beta 0.5$ 77.9 37 35.4 33.9 32.5 31.6 87 84.6 82.1 79.4 76.8 36 34.5 33.0 31.6 $30.$ 86 82.5 79.9 77.2 74.4 34 32.6 31.2 29.9 $28.$ 81 81.5 78.8 76.1 73.3 33 31.6 30.3 29.0 $27.$ 83 80.4 77.8 75.0 72.2 32 30.7 29.4 28.1 26.3 25.4 27.2 26.3 25.4 27.2 26.3 25.4 24.2 27.2 26.3 25.4 24.2 27.2 26.3 25.4 24.2 27.2 26.6 25.4 24.2 27.2 26.6 25.4 24.2 27.2 26.6 25.4 24.2 27.2 26.3 25.5 24.7 23.6 22.7 21.6 27.2 26.6 25.4 24.2 29.2 <td>89</td> <td>86.6</td> <td>84.2</td> <td>81.7</td> <td>79.0</td> <td>38</td> <td>36.4</td> <td>34.8</td> <td>33.3</td> <td>31.9</td>	89	86.6	84.2	81.7	79.0	38	36.4	34.8	33.3	31.9
8784.682.179.476.83634.533.031.630.8683.581.078.375.63533.532.136.729.8582.579.977.274.43432.631.229.928.8481.578.876.173.33331.630.329.027.8380.477.875.072.23230.729.428.126.8279.476.773.971.13129.728.427.226.8077.374.571.768.82927.826.625.424.7976.373.570.667.72826.825.624.523.7875.372.469.566.62725.824.723.622.7774.271.468.465.42624.923.822.721.7673.2,70.367.364.32523.922.821.820.7471.168.265.262.12323.020.919.919.7370.167.164.161.12221.020.019.018.117.7471.168.265.262.12323.022.921.921.919.7370.167.164.161.11211.615.114.117.1	88	85.6	83.1	80.5	77.9	37	35.4	33.9	32 5	31.0
86 83.5 81.0 78.3 75.6 35 33.5 32.1 30.7 29.9 85 82.5 79.9 77.2 74.4 34 32.6 31.2 29.9 $28.$ 84 81.5 78.8 76.1 73.3 33 31.6 30.3 29.0 $27.$ 83 80.4 77.8 75.0 72.2 32 30.7 29.4 28.1 $26.$ 82 79.4 76.7 73.9 71.1 31 29.7 28.4 27.2 26.8 81 78.4 75.6 72.8 69.9 30 28.7 27.5 26.3 25.8 80 77.3 74.5 71.7 68.8 29 27.8 26.6 25.6 24.5 23.7 78 75.3 72.4 69.5 66.6 27 25.8 24.7 23.6 22.7 77 74.2 71.4 68.4 65.4 26 24.9 23.8 22.7 21.6 75 72.2 69.2 66.3 63.2 24 22.9 21.9 20.9 19.9 19.7 74 71.1 68.2 65.2 62.1 23 22.0 20.9 19.9 19.7 74 71.1 68.2 65.2 62.1 23 22.0 20.9 19.9 19.7 74 71.1 68.2 65.2 62.1 23.2 21.0 20.9 19.9 19.7 <td>87</td> <td>84.6</td> <td>82.1</td> <td>79.4</td> <td>76.8</td> <td>36</td> <td>34.5</td> <td>33.0</td> <td>31.6</td> <td>30.2</td>	87	84.6	82.1	79.4	76.8	36	34.5	33.0	31.6	30.2
8582.579.977.274.43432.631.229.928.8481.578.876.173.33331.630.329.027.8380.477.875.072.23230.729.428.126.8279.476.773.971.13129.728.427.226.8178.475.672.869.93028.727.526.325.8077.374.571.768.82927.826.626.424.7976.373.570.667.72826.825.624.523.7875.372.469.566.62725.824.723.622.7774.271.468.465.42624.923.822.721.7673.2,70.367.364.32523.922.821.820.7572.269.266.363.22422.921.920.919.7471.168.265.262.12322.020.919.919.7370.167.164.161.12221.020.019.018.17168.165.062.059.02019.018.117.116.215.37464.060.957.955.31615.114.313.412.76<	86	83.5	81.0	78.3	75.6	35	33.5	32 1	38 7	29 4
8481.570.870.173.33331.630.329.027.8380.477.875.072.23230.729.428.126.8279.476.773.971.13129.728.427.226.8178.475.672.869.93028.727.526.325.8077.374.571.768.82927.826.625.424.7976.373.570.667.72826.825.624.523.7875.372.469.566.62725.824.723.622.7774.271.468.465.42624.923.822.721.7673.2,70.367.364.32523.922.821.820.7572.269.266.363.22422.921.920.919.7471.168.265.262.12322.020.919.018.17269.166.163.160.02120.019.018.117.216.7367.064.060.957.955.31615.114.313.412.6663.059.957.054.41514.113.312.511.6561.958.956.2171615.214.413.66 <td>85</td> <td>82.5</td> <td>79.9</td> <td>77.2</td> <td>74.4</td> <td>34</td> <td>32 6</td> <td>31 2</td> <td>20 0</td> <td>28 6</td>	85	82.5	79.9	77.2	74.4	34	32 6	31 2	20 0	28 6
8380.477.875.072.23230.729.428.126.88279.476.773.971.13129.728.427.226.88178.475.672.869.93028.727.526.325.88077.374.571.768.82927.826.625.424.27976.373.570.667.72826.825.624.523.77875.372.469.566.62725.824.723.622.77673.270.367.364.32523.922.821.820.97572.269.266.363.22422.921.920.919.919.7471.168.265.262.12322.020.919.919.17.17370.167.164.161.12221.020.019.018.117.216.17168.165.062.059.02019.018.117.216.17168.165.062.059.02019.018.117.216.17264.060.957.955.31615.114.313.412.7467.064.060.957.955.31615.114.313.412.7667.054.251.651.21716.1	84	81.5	78.8	76.1	73.3	33	31.6	30.3	20 0	27 7
82 79.4 76.7 73.9 71.1 31 29.7 28.4 27.2 26.3 81 78.4 75.6 72.8 69.9 30 28.7 27.5 26.3 $25.$ 80 77.3 74.5 71.7 68.8 29 27.8 26.6 25.4 $24.$ 79 76.3 73.5 70.6 67.7 28 26.8 25.6 24.5 $23.$ 78 75.3 72.4 69.5 66.6 27 25.8 24.7 23.6 $22.$ 77 74.2 71.4 68.4 65.4 26 24.9 23.8 22.7 21.8 75 72.2 69.2 66.3 63.2 24 22.9 21.9 20.9 $19.$ 74 71.1 68.2 65.2 62.1 23 22.0 20.9 19.9 $19.$ 74 71.1 68.2 65.2 62.1 23 22.0 20.9 19.0 18.1 72 69.1 66.1 63.1 60.0 21 20.0 19.0 18.1 17.2 70 67.0 64.0 60.9 58.0 19 18.1 17.1 16.2 15.3 64 63.0 59.9 57.1 18 17.1 16.2 15.3 $14.$ 68 65.6 61.9 57.9 55.3 16 15.1 14.3 13.4 $12.$ 64.0 69.9 57.9 <	83	80.4	77.8	75.0	72 2	32	30.7	20 4	28 1	26 0
31 78.4 75.6 72.8 69.9 30 28.7 27.5 26.3 25.4 77.3 74.5 71.7 68.8 29 27.8 26.6 25.4 24.7 79 76.3 73.5 70.6 67.7 28 26.8 25.6 24.5 23.7 78.7 75.3 72.4 69.5 66.6 27 25.8 24.7 23.6 22.7 77 74.2 71.4 68.4 65.4 26 24.9 23.8 22.7 21.8 76 73.2_1 70.3 67.3 64.3 25 23.9 22.8 21.8 20.9 74 71.1 68.2 65.2 62.1 23 22.0 20.9 19.9 19.7 73 70.1 67.1 64.1 61.1 22 21.0 20.0 19.0 18.1 17.2 76 69.1 66.1 63.1 60.0 21 20.0 19.0 18.1 17.2 16.2 74 71.1 68.2 65.2 62.1 19 18.1 17.1 16.2 15.3 70 67.0 64.0 60.9 58.0 19 18.1 17.1 16.2 15.3 70 67.0 64.0 60.9 57.9 55.3 16 15.1 14.3 13.4 12.6 64 65.0 61.9 57.9 55.2 52.2 52.5 13 12.2 1	82	79 4	76.7	73.9	71 1	31	20 7	28 4	27 2	26 0
8077.374.571.768.82927.826.625.424.7976.373.570.667.72826.825.624.523.7875.372.469.566.62725.824.723.622.7774.271.468.465.42624.923.822.721.7673.2,70.367.364.32523.922.821.820.7572.269.266.363.22422.921.920.919.7471.168.265.262.12322.020.919.919.7370.167.164.161.12221.020.019.018.117.27469.166.163.160.02120.019.018.117.216.17067.064.060.958.01918.117.116.215.314.6865.661.958.956.21716.115.214.413.6663.059.957.054.41514.113.312.511.6561.958.956.153.41413.212.411.610.6460.957.955.252.51312.211.410.69.6359.957.152.349.7109.28.57.87.	81	78.4	75.6	72.8	69.9	30	28.7	27 5	26 3	25.1
7976.373.570.667.72826.825.624.523.77875.372.469.566.62725.824.723.622.7774.271.468.465.42624.923.822.721.7673.2,70.367.364.32523.922.821.820.7572.269.266.363.22422.921.920.919.7471.168.265.262.12322.020.919.919.7370.167.164.161.12221.020.019.018.17269.166.163.160.02120.019.018.117.27067.064.060.958.01918.117.116.215.37664.063.059.957.11817.116.215.314.6865.661.958.956.21716.115.214.413.6764.060.957.955.31615.114.313.412.6663.059.957.054.41514.113.312.511.6561.958.956.153.41413.212.411.610.6460.957.955.252.51312.211.410.69.6359.9	80	77.3	74.5	71.7	68.8	20	27 8	26 6	25 4	24 3
7875.372.469.566.62725.824.723.822.721.7774.271.468.465.42624.923.822.721.7673.2,70.367.364.32523.922.821.820.7572.269.266.363.22422.921.920.919.7471.168.265.262.12322.020.919.919.7370.167.164.161.12221.020.019.018.17269.166.163.160.02120.019.018.117.27067.064.060.958.01918.117.116.215.314.6865.061.958.956.21716.115.214.413.412.46463.059.957.054.41514.113.312.511.6561.958.956.153.41413.212.411.610.6460.957.955.252.51312.211.410.69.6359.957.054.41514.113.312.511.6460.957.955.252.51312.211.410.69.6359.956.153.41413.212.411.610.9.<	79	76.3	73.5	70 6	67 7	28	26 8	25.6	24 5	23 4
77 74.2 71.4 68.4 65.4 26 24.9 23.8 22.7 21.4 76 73.2 70.3 67.3 64.3 25 23.9 22.8 21.8 20.9 75 72.2 69.2 66.3 63.2 24 22.9 21.9 20.9 $19.$ 74 71.1 68.2 65.2 62.1 23 22.0 20.9 19.9 $19.$ 73 70.1 67.1 64.1 61.1 22 21.0 20.0 19.9 $19.$ 73 70.1 67.1 64.1 61.1 22 21.0 20.0 19.0 18.1 17.2 71 68.1 65.0 62.0 59.0 20 19.0 18.1 17.2 16.2 70 67.0 64.0 60.9 58.0 19 18.1 17.1 16.2 15.3 70 67.0 64.0 60.9 58.0 19 18.1 17.1 16.2 15.3 70 67.0 64.0 60.9 57.9 55.3 16 15.1 14.3 13.4 12.6 70 67.0 64.0 60.9 57.9 55.3 16 15.1 14.3 13.4 12.6 70 66.0 57.9 55.2 52.5 13 12.2 11.4 10.6 9.6 66.0 57.9 55.2 52.5 13 12.2 11.4 10.6 9.6	78	75.3	72 4	69.5	44 4	27	25 8	24 7	23 6	22 5
7673.2,70.367.364.32523.922.821.820.7572.269.266.363.22422.921.920.919.7471.168.265.262.12322.020.919.919.7370.167.164.161.12221.020.019.018.17269.166.163.160.02120.019.018.117.27168.165.062.059.02019.018.117.216.27067.064.060.958.01918.117.116.215.36966.063.059.957.11817.116.215.314.6865.661.958.956.21716.115.214.413.46460.957.955.31615.114.313.412.6460.957.955.252.51312.211.410.69.6359.957.054.41514.113.312.511.6460.957.955.252.51312.211.410.69.6359.956.053.350.61110.29.58.78.6157.955.152.349.7109.28.57.87.6057.054.468.0 <t< td=""><td>77</td><td>74.2</td><td>71 4</td><td>68 4</td><td>65.4</td><td>26</td><td>24 9</td><td>23 8</td><td>22 7</td><td>21 6</td></t<>	77	74.2	71 4	68 4	65.4	26	24 9	23 8	22 7	21 6
7572.269.266.363.22422.921.920.919.7370.167.164.161.12322.020.919.919.7370.167.164.161.12221.020.019.018.17269.166.163.160.02120.019.018.117.27168.165.062.059.02019.018.117.216.27067.064.060.958.01918.117.116.215.36966.063.059.957.11817.116.215.314.46865.061.958.956.21716.115.214.413.46460.957.955.31615.114.313.412.6561.958.956.153.41413.212.411.610.6460.957.955.252.51312.211.410.69.6359.957.054.41514.113.312.511.6460.957.955.252.51312.211.410.69.6359.957.054.251.61211.210.49.78.6457.955.152.349.7109.28.57.87.5855.152.349.7<	76	73 2.	70 3	67 3	64 3	25	23 0	22 8	21 8	20.7
7471.1 68.2 65.2 62.1 23 22.0 20.9 19.9 19.7 7370.1 67.1 64.1 61.1 22 21.0 20.0 19.0 18.1 72 69.1 66.1 63.1 60.0 21 20.0 19.0 18.1 17.2 71 68.1 65.0 62.0 59.0 20 19.0 18.1 17.2 16.2 70 67.0 64.0 60.9 58.0 19 18.1 17.1 16.2 15.3 69 66.0 63.0 59.9 57.1 18 17.1 16.2 15.3 69 66.0 63.0 59.9 57.1 18 17.1 16.2 15.3 68 65.0 61.9 58.9 56.2 17 16.1 15.2 14.4 13.4 67 64.0 60.9 57.9 55.3 16 15.1 14.3 13.4 12.4 66 63.0 59.9 57.0 54.4 15 14.1 13.3 12.5 11.4 65 61.9 58.9 56.1 53.4 14 13.2 12.4 11.6 10.6 64 60.9 57.9 55.2 52.5 13 12.2 11.4 10.6 9.7 63 59.9 57.0 54.2 51.6 12 11.2 10.4 9.7 8.7 64 57.9 55.1 52.3 49	75	72 2	69.2	66 3	63 2	24	22 0	21 0	20.0	10 8
7370.1 67.1 64.1 61.1 22 21.0 20.0 19.0 18.1 72 69.1 66.1 63.1 60.0 21 20.0 19.0 18.1 17.2 71 68.1 65.0 62.0 59.0 20 19.0 18.1 17.2 16.1 70 67.0 64.0 60.9 58.0 19 18.1 17.1 16.2 15.3 69 66.0 63.0 59.9 57.1 18 17.1 16.2 15.3 68 65.0 61.9 58.9 56.2 17 16.1 15.2 14.4 68 65.0 61.9 58.9 56.2 17 16.1 15.2 14.4 64 60.9 57.9 55.3 16 15.1 14.3 13.4 12.5 65 61.9 58.9 56.1 53.4 14 13.2 12.4 11.6 10.6 64 60.9 57.9 55.2 52.5 13 12.2 11.4 10.6 9.6 63 59.9 57.0 54.2 51.6 12 11.2 10.4 9.7 8.6 64 53.2 50.5 48.0 8 7.3 6.6 5.9 5.1 63 59.9 55.1 52.3 49.7 10 9.2 8.5 7.8 7.6 64 53.2 50.5 48.0 8 7.3 6.6 5.9 5.5	74	.71.1	68.2	65.2	62 1	23	22 0	20.9	10 0	19 0
72 69.1 66.1 63.1 60.0 21 20.0 19.0 18.1 17.2 71 68.1 65.0 62.0 59.0 20 19.0 18.1 17.2 16.1 70 67.0 64.0 60.9 58.0 19 18.1 17.1 16.2 15.3 69 66.0 63.0 59.9 57.1 18 17.1 16.2 15.3 69 66.0 63.0 59.9 57.1 18 17.1 16.2 15.3 68 65.6 61.9 58.9 56.2 17 16.1 15.2 14.4 68 65.6 61.9 58.9 56.2 17 16.1 15.2 14.4 13.3 67 64.0 60.9 57.9 55.3 16 15.1 14.3 13.4 12.5 61.9 58.9 56.1 53.4 14 13.2 12.4 11.6 10.6 64 60.9 57.9 55.2 52.5 13 12.2 11.4 10.6 9.6 63 59.9 57.0 54.2 51.6 12 11.2 10.4 9.7 8.6 62 58.9 56.0 53.3 50.6 11 10.2 9.5 8.7 8.7 61 57.9 55.1 52.3 49.7 10 9.2 8.5 7.8 7.6 65 53.2 50.5 48.0 8 7.3 <t< td=""><td>73</td><td>70.1</td><td>67.1</td><td>64 1</td><td>61 1</td><td>22</td><td>21 0</td><td>20.0</td><td>10 0</td><td>18 1</td></t<>	73	70.1	67.1	64 1	61 1	22	21 0	20.0	10 0	18 1
71 68.1 65.0 62.0 59.0 20 19.0 18.1 17.2 16.1 70 67.0 64.0 60.9 58.0 19 18.1 17.1 16.2 15.6 69 66.0 63.0 59.9 57.1 18 17.1 16.2 15.3 68 65.0 61.9 58.9 56.2 17 16.1 15.2 14.4 68 65.0 61.9 58.9 56.2 17 16.1 15.2 14.4 67 64.0 60.9 57.9 55.3 16 15.1 14.3 13.4 12.6 66 63.0 59.9 57.0 54.4 15 14.1 13.3 12.5 11.1 65 61.9 58.9 56.1 53.4 14 13.2 12.4 11.6 10.6 64 60.9 57.9 55.2 52.5 13 12.2 11.4 10.6 9.6 63 59.9 57.0 54.2 51.6 12 11.2 10.4 9.7 8.6 62 58.9 56.0 53.3 50.6 11 10.2 9.5 8.7 8.7 61 57.9 55.1 52.3 49.7 10 9.2 8.5 7.8 7.6 61 57.9 55.1 52.3 49.7 47.2 7 6.3 5.6 4.9 4.5 57 54.1 51.4 48.9	72	69 1	66 1	63 1	60.0	21	20.0	10.0	18 1	17 2
70 67.0 64.0 60.9 58.0 19 18.1 17.1 16.2 15.3 69 66.0 63.0 59.9 57.1 18 17.1 16.2 15.3 14.4 68 65.6 61.9 58.9 56.2 17 16.1 15.2 14.4 $13.$ 67 64.0 60.9 57.9 55.3 16 15.1 14.3 13.4 12.6 66 63.0 59.9 57.0 54.4 15 14.1 13.3 12.5 11.1 65 61.9 58.9 56.1 53.4 14 13.2 12.4 11.6 10.6 63 59.9 57.0 54.4 15 14.1 13.3 12.5 11.1 65 61.9 58.9 56.1 53.4 14 13.2 12.4 11.6 10.6 64 60.9 57.9 55.2 52.5 13 12.2 11.4 10.6 9.6 63 59.9 57.0 54.2 51.6 12 11.2 10.4 9.7 8.6 62 58.9 56.0 53.3 50.6 11 10.2 9.5 8.7 8.7 61 57.9 55.1 52.3 49.7 10 9.2 8.5 7.8 7.6 65 53.2 50.5 48.0 8 7.3 6.6 5.9 5.5 58 55.1 52.3 49.7 4	71	68.1	65.0	62 0	59 0	20	10.0	18 1	17.2	16 2
69 $66.0, 63.0$ 59.9 57.1 18 17.1 16.2 15.3 $14.$ 68 65.0 61.9 58.9 56.2 17 16.1 15.2 14.4 $13.$ 67 64.0 60.9 57.9 55.3 16 15.1 14.3 13.4 12.2 66 63.0 59.9 57.0 54.4 15 14.1 13.3 12.5 11.1 65 61.9 58.9 56.1 53.4 14 13.2 12.4 11.6 10.6 64 60.9 57.9 55.2 52.5 13 12.2 11.4 10.6 9.6 63 59.9 57.0 54.4 15 14.1 13.3 12.5 11.1 64 60.9 57.9 55.2 52.5 13 12.2 11.4 10.6 9.6 63 59.9 57.0 54.2 51.6 12 11.2 10.4 9.7 8.6 62 58.9 56.0 53.3 50.6 11 10.2 9.5 8.7 8.7 61 57.9 55.1 52.3 49.7 10 9.2 8.5 7.8 7.6 65 53.2 50.5 48.0 8 7.3 6.6 5.9 5.5 58 55.1 52.3 49.7 47.2 7 6.3 5.6 4.9 4.5 57 54.1 51.4 48.9 46.4 6	70	67 0	64 0	60.0	58 0	10	18 1	17 1	16 2	15 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	66 0	63.0	50 0	57 1	18	17 1	16 2	15.2	14 4
67 64.0 60.9 57.9 55.3 16 15.1 14.3 13.4 12.4 66 63.0 59.9 57.0 54.4 15 14.1 13.3 12.5 11.1 65 61.9 58.9 56.1 53.4 14 13.2 12.4 11.6 10.6 64 60.9 57.9 55.2 52.5 13 12.2 11.4 10.6 9.6 63 59.9 57.0 54.2 51.6 12 11.2 10.4 9.7 8.6 62 58.9 56.0 53.3 50.6 11 10.2 9.5 8.7 8.6 61 57.9 55.1 52.3 49.7 10 9.2 8.5 7.8 7.6 61 57.9 55.1 52.3 49.7 10 9.2 8.5 7.8 7.6 60 57.0 54.1 51.4 48.9 9 8.3 7.5 6.8 $6.$ 59 56.0 53.2 50.5 48.0 8 7.3 6.6 5.9 5.2 58 55.1 52.3 49.7 47.2 7 6.3 5.6 4.9 4.2 57 54.1 51.4 48.9 46.4 6 5.3 4.6 4.0 3.2 56 53.2 50.6 48.1 45.7 5 4.3 3.7 3.0 2.4 57 54.1 51.4 48.9	68	65 6	61 0	58 0	56 2	17	14 1	15.2	14.4	12 5
66 63.0 59.9 57.0 54.4 15 14.1 13.3 12.5 $11.$ 65 61.9 58.9 56.1 53.4 14 13.2 12.4 11.6 $10.$ 64 60.9 57.9 55.2 52.5 13 12.2 11.4 10.6 $9.$ 63 59.9 57.0 54.2 51.6 12 11.2 10.4 9.7 $8.$ 62 58.9 56.0 53.3 50.6 11 10.2 9.5 8.7 $8.$ 61 57.9 55.1 52.3 49.7 10 9.2 8.5 7.8 7.6 61 57.9 55.1 52.3 49.7 10 9.2 8.5 7.8 7.6 60 57.0 54.1 51.4 48.9 9 8.3 7.5 6.8 $6.$ 59 56.0 53.2 50.5 48.0 8 7.3 6.6 5.9 5.2 58 55.1 52.3 49.7 47.2 7 6.3 5.6 4.9 4.2 57 54.1 51.4 48.9 46.4 6 5.3 4.6 4.0 3.2 57 54.1 51.4 48.9 46.4 6 5.3 4.6 4.0 3.2 57 54.1 51.4 48.9 46.4 6 5.3 4.6 4.0 3.2 56 53.2 50.6 48.1 45.7	67	64 0	40.0	57 0	55 2	14	15.1	14.2	12 4	12 4
65 61.9 58.9 56.1 53.4 14 13.2 12.4 11.6 $10.$ 64 60.9 57.9 55.2 52.5 13 12.2 11.4 10.6 $9.$ 63 59.9 57.0 54.2 51.6 12 11.2 10.4 9.7 $8.$ 62 58.9 56.0 53.3 50.6 11 10.2 9.5 8.7 $8.$ 61 57.9 55.1 52.3 49.7 10 9.2 8.5 7.8 7.6 60 57.0 54.1 51.4 48.9 9 8.3 7.5 6.8 $6.$ 59 56.0 53.2 50.5 48.0 8 7.3 6.6 5.9 5.3 58 55.1 52.3 49.7 47.2 7 6.3 $.5.6$ 4.9 4.3 57 54.1 51.4 48.9 46.4 6 5.3 4.6 4.0 3.5 58 55.1 52.3 49.7 47.2 7 6.3 $.5.6$ 4.9 4.3 57 54.1 51.4 48.9 46.4 6 5.3 4.6 4.0 3.5 57 54.1 51.4 48.9 46.4 4 6 5.3 4.6 4.0 3.5 57 54.3 49.7 47.2 44.9 4 3.3 2.7 2.0 1.6 57 51.3 48.8 46.4 <	66	63.0	50 0	57 0	54 4	15	14 1	12.2	12.5	11 7
64 60.9 57.9 55.2 52.5 13 12.2 11.4 10.6 9.63 63 59.9 57.0 54.2 51.6 12 11.2 10.4 9.7 8.62 62 58.9 56.0 53.3 50.6 11 10.2 9.5 8.7 8.62 61 57.9 55.1 52.3 49.7 10 9.2 8.5 7.8 7.660 57.0 54.1 51.4 48.9 9 8.3 7.5 6.8 6.59 59 56.0 53.2 50.5 48.0 8 7.3 6.6 5.9 5.5 58 55.1 52.3 49.7 47.2 7 6.3 5.66 4.9 4.2 57 54.1 51.4 48.9 46.4 6 5.3 4.66 4.0 3.2 58 55.1 52.3 49.7 47.2 7 6.3 5.66 4.9 4.2 57 54.1 51.4 48.9 46.4 6 5.3 4.66 4.0 3.2 56 53.2 50.6 48.1 45.7 5 4.3 3.7 3.0 2.4 54 51.3 48.8 46.4 44.1 3 2.4 1.7 1.1 0.5 53 50.4 48.0 43.6 43.4 2 1.4 0.8 0.4 -52 49.5 47.1 44.7 42.6 1	65	61 0	58 0	56 1	53 4	14	12.2	12 4	11 4	10.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	64	60.0	57 9	55 2	52 5	12	12 2	11 4	10.4	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	63 1	50 0	57 0	54 2	51 6 1	1 12	1 11 2	10.4	0.7	80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62	58 0	56 0	53 3	50.6	11	10.2	0.4	87	8.0
60 57.0 54.1 51.4 48.9 9 8.3 7.5 6.8 6.5 59 56.0 53.2 50.5 48.0 8 7.3 6.6 5.9 5.5 58 55.1 52.3 49.7 47.2 7 6.3 $.5.6$ 4.9 4.5 57 54.1 51.4 48.9 46.4 6 5.3 4.6 4.0 3.5 56 53.2 50.6 48.1 45.7 5 4.3 3.7 3.0 2.4 56 53.2 50.6 48.1 45.7 5 4.3 3.7 3.0 2.4 55 52.3 49.7 47.2 44.9 4 3.3 2.7 2.0 1.4 54 51.3 48.8 46.4 44.1 3 2.4 1.7 1.1 0.5 53 50.4 48.0 45.6 43.4 2 1.4 0.8 0.4 $ 52$ 49.5 47.1 44.7 42.6 1 0.5 0.1 $ 51$ 48.5 46.2 43.9 41.8 $ -$	61	57 0	55 1	52 3	49 7	10	0.2	. 8 5	7 9	7.0
59 56.0 53.2 50.5 48.0 8 7.3 6.6 5.9 5.5 58 55.1 52.3 49.7 47.2 7 6.3 .5.6 4.9 4.1 57 54.1 51.4 48.9 46.4 6 5.3 4.6 4.0 3.1 56 53.2 50.6 48.1 45.7 5 4.3 3.7 3.0 2.4 55 52.3 49.7 47.2 44.9 4 3.3 2.7 2.0 1.4 54 51.3 48.8 46.4 44.1 3 2.4 1.7 1.1 0.1 53 50.4 48.0 43.4 2 1.4 0.8 0.4 - 52 49.5 47.1 44.7 42.6 1 0.5 0.1 - - 51 48.5 46.2 43.9 41.8 - - - -	60	570	54 1	51 4	48.0	0	8.2	7 5	4.9	41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59	50	53 2	50 5	48 0	. 8	7 2	6.4	50	5.2
57 54.1 51.4 48.9 46.4 6 5.3 4.6 4.0 3.3 56 53.2 50.6 48.1 45.7 5 4.3 3.7 3.0 2.4 55 52.3 49.7 47.2 44.9 4 3.3 2.7 2.0 1.4 54 51.3 48.8 46.4 44.1 3 2.4 1.7 1.1 0.1 53 50.4 48.0 45.6 43.4 2 1.4 0.8 0.4 - 52 49.5 47.1 44.7 42.6 1 0.5 0.1 - - 51 48.5 46.2 43.9 41.8 - - - -	58	55 1	52 3	49 7	47 2	7	6.2	5.4	4.0	1 2
56 53.2 50.6 48.1 45.7 5 4.3 3.7 3.0 2.4 55 52.3 49.7 47.2 44.9 4 3.3 2.7 2.0 1.4 54 51.3 48.8 46.4 44.1 3 2.4 1.7 1.1 0.1 53 50.4 48.0 45.6 43.4 2 1.4 0.8 0.4 - 52 49.5 47.1 44.7 42.6 1 0.5 0.1 - - 51 48.5 46.2 43.9 41.8 - - - -	57	54 1	51 4	48 0	46 4		5.2	14	4.0	2.2
55 52.3 49.7 47.2 44.9 4 3.3 2.7 2.0 1.4 54 51.3 48.8 46.4 44.1 3 2.4 1.7 1.1 0.1 53 50.4 48.0 45.6 43.4 2 1.4 0.8 0.4 - 52 49.5 47.1 44.7 42.6 1 0.5 0.1 - - 51 48.5 46.2 43.9 41.8 - - - -	56	53 2	50 4	48 1	45 7	5	1.3	2.7	2.0	2.3
54 51.3 48.8 46.4 44.1 3 2.4 1.7 1.1 0.1 53 50.4 48.0 45.6 43.4 2 1.4 0.8 0.4 - 52 49.5 47.1 44.7 42.6 1 0.5 0.1 - 51 48.5 46.2 43.9 41.8 - - -	55	52 2	40 7	47 2	44.0		4.3	3./	2.0	1.4
53 50.4 48.0 45.6 43.4 2 1.4 0.8 0.4 52 49.5 47.1 44.7 42.6 1 0.5 0.1 - 51 48.5 46.2 43.9 41.8 - - -	54	51 2	47.7	46 4	44.7	4	3.3	1.7	2.0	0.7
52 49.5 47.1 44.7 42.6 1 0.5 0.1 - 51 48.5 46.2 43.9 41.8 - -	52	50 4	40.0	40.4	44.1	3	1.4	0.0	0.4	0./
51 48.5 46.2 43.9 41.8	50	40.5	40.0	43.0	43.4	4	0.5	0.0	0.4	-
JI 40.3 40.4 43.7 41.0 .	51	49.5	4/ .1	44./	44.0	1.	0.5	0.1	-	-
50 47 4 45 2 42 1 41 1	50	40.3	40.2	43.9	41.0					

6.1. Własności wolframu

Wolfram jest pierwiastkiem metalicznym, stalowoszarym. W stanie rodzimym nie występuje. Jest on mieszaniną pięciu izotopów trwałych:

Średnia liczba masowa wolframu – 183,85

Liczba atomowa - 74

Konfiguracja elektronów zewnętrznych – 5d⁴ós²

Wartościowości - I, III, IV, V, VI

Położenie w układzie okresowym – W jest pierwiastkiem przejściowym, kończy rodzinę VIB /chromowce/ [17].

Wolfram oraz tantal, wykazują dość szczególne zachowanie w procesie analizy metodą spektrografii masowej tak, jak szczególne są własności fizyczne i chemiczne odróżniające metale wysokotopliwe od innych. Tabela 4 zawiera zestaw niektórych danych fizycznych wolframu [16, 17].

Duża twardość i kruchość przy małej wytrzymałości mechanicznej wolframu sprawiają wiele kłopotu podczas przygotowywania elektrod. Niektóre własności termodynamiczne wolframu mają wyraźny wpływ na proces iskrzenia elektrod. Pewne wnioski na temat tego procesu mogą być wyciągnięte już z samego porównania wydajności jonowej i wymienionych w tabeli 4 danych termodynamicznych wolframu oraz analogicznych własności innych metali np. Al, Fe czy Cu [7]. Takie porćwnawcze zestawienie podane jest w tabeli 5.

Z zestawienia tego widać wyraźnie, że własności wolframu muszą rzutować na przebieg procesu wyładowania próźniowego. Jakkolwiek różnica wydajności jonowej wolframu w porównaniu z wydajnością jonową Al, Fe czy Cu jest nieznaczna /wiersz 1, tabeli 5/, to prąd jonowy dla wolframu /przy jednakowej geometrii elektrod i jednakowych parametrach wzbudzania/ jest w sposób znaczący mniejszy /tabela 5, wiersz 2/. Ponadto widać wyraźną różnicę w odparowalności wolframu i trzech porównywanych pierwiastków. Dla uzyskania takiego samego ciśnienia pary potrzebna jest dla wolframu znacznie większa energia. Te szczególne właściwości wolframu powodują znaczne przedłużenie czasu ekspozycji widma wolframowego. Wyższy prąd jonowy, a co za tym idzie skrócenie czasu ekspozycji, można uzyskać przez zahamowanie odpływu ciepła w głąb próbki. Zatem im cieńsza elektroda, tym silniej jest nagrzewana i tym korzystniejszy jest proces wytwarzania jonów. Jednak ze względu na kruchość i łamliwość wolframu uzyskanie cienkich elektrod jest utrudnione [7].

Własności chemiczne wolframu także wyróżniają go spośród innych metali. Jest on bardzo odporny chemicznie – na źimno rozpuszcza się tylko w mieszaninie stężonych kwasów HF + HNC₃. Ta odporność chemiczna, będąca oczywistą zaletą materiału, stanowi utrudnienie w procesie przygotowania próbek do analizy.

on bardis actions in

WŁASNOŚCI FIZYCZNE WOLFRAMU

	A A ROUTE MELTING	Jedn	ostka	Wartość	liczbowa
Lp.	Własność fizyczna	tradycyjna	wg SI	w jednostkach tradycyjnych	w jednostkach SI
1	Temp. topnienia	°c	к	3410	3683
2	Temp. wrzenia	°C	K	5183	5456
3	Sieč przestrzenna	3	3	sześcienna, prz na, parametr si	estrzennie centrycz- ieci: 3,158 Å
4	Gęstość	g/cm	kg/cm		the second second
	spiekany			10,0÷17,8	10 000÷17 880
	młotkowany		12 10 -	17,5:19,0	17 500:19 000
30	ciągniony	and a start of	N. TOUR IN	19,0:19,3	19 000÷19 300
5	Przewodnictwo	1000	524	1 Charles and a second	a providia pasal
	cieplne	cal/cm. •s.°C	W/m·deg	1.0.5	i - Tale wolater W
	przy 20°C	11 21 - 11	1000	0,40	167
	przy 827°C	1. A. A.		0,28	117
	przy 1727°C	and a lot	Sec. St.	0,24	100
6	Ciepło właściwe dla	cal/g·°C	J/kg·deg	_2	a and storage that a
	20÷100°C	1.1.1.1.1.1.1	A COMPANY	3,4.10 2	142
	1000°C	70 80 000	1. 1. 1. 1	3,6.10	153
	2000°C	and the second	1.15 2.7	4,7.10	196 5
7	Ciepło topnienia	cal/g	J/kg	ok. 60	ok. 2,5.10
8	Ciepło parowania	cal/g	J/kg	ok. 1150	ok. 4,8.10
9	Oporność właściwa	S2 · cm	S2.m	-6	-8
	przy 20°C	C. Shares and		5,5.10	5,5.10_7
	przy 1200 C	1. 1. 1. 1.	1.1.4.6.6.	4,0.10_5	4,0.10_7
	przy 2400 C	. 2	2	8,5.10	8,5.10
10	Twardość Brinella /spiekany/	kG/mm*	N/m*	200÷300	2.109÷3.10
11	Wytrzymałość na	2	2		A State of Company
	rozciąganie	kG/mm	N/m		7 8
	spiekany			8 : 13	7,8-10,-1,2-100
	ciggniony			180-400	1,7.10 +3,9.10
12	Granica plastycznoś-				and the seal of the last
	ci drutu wyżarzone-	. 2	. 2		8 8
	go	kG/mm	N/m	71,4:82,6	7.10 -8.10
13	Potencjały jonizacji	eV	J		-18
			1.11.11	7,98	1,3.10
	1	1.1.1.1.1	20.50	17,7	2,8.10-18
	III	200000		24,0	3,8.10 18
	IV	1		35.0	5,6.10

Tabela 5

Lp.	Pierwiastek	AI	Fe'	Cu	w .
1	Wydajność jonowa w <u>'Atom</u> . 10 ⁻⁷	1,7	1,8	1,5	0,7
2	Sredni prąd jonowy w /A • 10 ¹⁰ /	24	0,51	24	0,10,2
3	Temperatura topnienia w /°C/	660	1535	1083	3410
4	Temperatura wrzenia w / ^P C/	2467	3000	2595	5927
5	Temperatura potrzebna do uzyskania ciśnienia pary 10 ⁻⁵ Tr w /°C/	824	1094	946	2554

MYDAJNOSC JONOWA I DANE TERMODYNAMICZNE · Al, Fe, Cu i W

Z tlenem wolfram na zimno nie reaguje, ale już w temperaturze 400÷500°C zaczyna się proces silnego utleniania. Tworzą się wtedy tlenki typu WC₂, WO₂; W₄O₁₁

[16]. Również z wodorem i azotem wolfram nie reaguje w temperaturze pokojowej, ale już w temperaturze 2300°C tworzą się azotki, a w temperaturze topnienia wolframu – wodorki. Węgiel, tlenek węgla i dwutlenek węgla reagują w wysokiej temperaturze z wolframem tworząc w całej jego objętości węgliki o różnym składzie stechiometrycznym, odpowiedzialne za ogólnie znaną kruchość tego materiału. Gazy związane z wolframem chemisorpcyjnie /warstwa gazów powstająca na powierzchni elektrod w czasie przygotowywania próbki oraz już w źródle jonów pod wpływem gazów resztkowych/ mają zatem w warunkach wyładowania iskrowego możliwość reakcji z wolframem. Relatywnie wysokie wartości ciepła tworzenia tlenku, azotku i wodorku wolframu /np. molowa entalpia standardowa AH²₂₀₈ równa jest:

> - 570 <u>kJ</u> dla WO₂ - 840 <u>kJ</u> dla WO₃ - 1413 <u>kJ</u> dla W₂C₅/

skłaniają je do tworzenia się w najgorętszej, powierzchniowej warstwie elektrod. Taka właśnie lokalizacja związków wolframu znacznie podnosi pracę wyjścia próbki, co ma swoje konsekwencje w postaci zakłóceń ilościowej analizy widma. Np. niespodziewanie wysoki jest iloraz pojedynczo do dwukrotnie naładowanych jonów metali alkalicznych. Należy jeszcze dodać, że związki wolframu, z tlenem, węglem, azotem i wodorem mogą mieć charakter kompleksów typu W_kH₁, W_C, W_N, W_Q, W_OH⁺.

http://rcin.org.pl

21

Wysoka stabilność tych kompleksów jest przyczyną ich względnie dużego udziału w wyładowaniu próżniowym i wzbogacaniu widma wolframu w linie im odpowiadające [7]. W temperaturze powyżej 1400°C wolfram może również reagować z krzemem /W₅Si₃ i WSi₂/ oraz z borem /W₂B, WB, WB₂, W₂B₅/. W razie dużego stężenia tych dwóch pierwiastków w próbce wolframowej można liczyć się ze znalezieniem w widmie linii borków i krzemków wolframu. W dotychczasowej naszej praktyce linii tych jednak nie spotkaliśmy.

6.2. Analiza jakościowa widma wolframu

Analiza jakościowa polega na identyfikacji linii widmowych ułożonych na płycie fotograficznej w porządku rosnących ilorazów m. Z położenia linii na płycie

określa się wartość m./n-e pierwiastka "i", a stąd już bezpośrednio "m." /znając krotność ładunku jonu "n"/. Dokładny opis procesu analizy jakościowej zamieszczony jest w opracowaniu [6].

Płyta obejmuje zakres mas atomowych od 6 ÷ 240, stąd znajdują się na niej serie linii izotopowych wolframu o ładunkach od 1+ do 14+. Linie jonów o wyższych stopniach jonizacji niż 14+ są zbyt słabe i giną w tle. Tabela 6 zawiera wartości

$$M = \frac{m}{m}$$
 dla obserwowanych na płycie głównych linii wolframowych.

Tabela 6

Sto- pień jonizo- cji	186 _{W/28,41%}	184 _{W/30,64%} /	183 _{W/14,40%/}	,182 _{W/26} ,41%/	180 _{W/0,135%}
1+	185,9543	183,9509	182,9502	181,9482	179,9469
2+	92,9772	91,9755	91,4751	90,9741	89,9735
3+	61,9848	61,3170	60,9834	60,6494 .	59,9823
4+	46,4886	45,9877	45,7376	45,4871	44,9867
5+	37,1909	36,7902	36,5902	36,3897	35,9894
6+	30,9924	30,6585	30,4917	30,3247	29,9912
7+	26,5649	26,2787	26,1357	25,9926	25,7067
8+	23,2443	22,9939	22,8688	22,7435	22,4934
9+	20,6616	20,4390 .	20,3278	20,2165	19,9941
10+	18,5954	18,3951	18,2950	18,1948	17,9947
11+	16,9049	16,7228	16,6318	16,5407	16,3588
12+	15,4962 .	15,3292	15,2459	15,1624	14,9956
13+	14,3042	14,1501	14,0731	13,9960	13,8420
14+	13,2825	13,1394	13,0678	12,9963	12,8533

GŁOWNE LINIE WIDMA WOLFRAMU

Oprócz głównych linii wolframowych w widmie pojawiają się także linie wywołane przez jony kompleksowe wolframu /por. pkt 6.1 – własności wolframu/ oraz przez jony, których ładunek uległ zmianie w obszarze analizatorów, czyli tzw. linie Astona [6]. Tabela 7 zawiera zestawienie wzorów i mas cząsteczkowych związków kompleksowych wolframu w zakresie mas atomowych 6;240.

Tabela 7

WZORY I MASY CZĄSTECZKOWE JONÓW KOMPLEKSOWYCH WOLFRAMU

Lp.	Wzory jonów	Masy cząsteczkowe /przybliżone/
1	$182_{W}12_{C}2^{+}186_{W}12_{C}2^{+}$	97; 97,5; 98; 99
2	$182_{W}14_{N}2^{+}186_{W}14_{N}2^{+}$	98; 98,5; 99; 100
3	$^{182}w^{16}o^{2+}^{186}w^{16}o^{2+}$	99, 99,5; 100; 101
4	¹⁸² w ¹⁶ O ¹ H ²⁺ ¹⁸⁶ w ¹⁶ O ¹ H ²⁺	99,5; 100; 100,5; 101,5
5	$182_{W}1_{H}^{+} \dots 186_{W}1_{H}^{+}$	183; 184; 185; 187
6	$^{182}w^{12}c^{+}^{186}w^{12}c^{+}$	194; 195; 196; 198
7	182 _W 14 _N ⁺ ¹⁸⁶ W ¹⁴ N ⁺	196; 197; 198; 200
8	182 _w ¹⁶ O ⁺ ¹⁸⁶ w ¹⁶ C ⁺	198; 199; 200; 202
9	¹⁸² w ¹⁶ O ¹ H ⁺ ¹⁸⁶ w ¹⁶ O ¹ H ⁺	199; 200; 201; 203
10	$^{182}w^{12}c_{2}^{+}^{186}w^{12}c_{2}^{+}$	206; 207; 208; 209
11	$182_W 14_{N_2}^+ \dots 186_W 14_{N_2}^+$	210; 211; 212; 214
12	$^{182}w^{16}O_2^{+}^{186}w^{16}O_2^{+}$	214; 215; 216; 218
13	182w16021H+186w16021H+	215; 216; 217; 219
14	$^{182}w^{12}c_{3}^{+}^{186}w^{12}c_{3}^{+}$	218; 219; 220; 222
15	$182_{W}14_{N_{3}}+186_{W}14_{N_{3}}+$	224; 225; 226; 228
16	$^{182}w^{16}O_{3}^{+}^{186}w^{16}O_{3}^{+}$	230; 231; 232; 234

Nie są tu zamieszczone kompleksy pochodzące od ¹⁸⁰W, gdyż ze względu na małą abundancję tego izotopu /0,135%/ jego kompleksy nie są widoczne na płycie fotograficznej. W tabeli 8 zestawiono linie Astona pojawiające się na płytach jonoczułych eksponowanych wolframem.

ZESTAWIENIE	LINII	ASTONA	DLA	WCLFRAMU

Zmiana ładunku	Wartość <u>m</u>
180w6 5	43 1673
182 _w 6 -> 5	43, 6676
183 _w 6 5	43,9081
184 _w 6 5	44 1482
186 _W 6 → 5	44,6290
180, 5	54 2934
182, 5 -> 4	54 8588
183,45	57,1720
184,	57 4847
186,45 4	58 1107
190 4 -> 2	30,110/
	79,9764
182 _W 4 3	80,8659
183 _W 4 - 3	81,3112
184 _W 4	81,7560
$186_{W}^4 \rightarrow 3$	82,6464
180 _w 5 3	99 9705
182 _w 5 3	101 0824
183w5 3	101,6390
184 _w 5 3	102, 1950
186 _w 5 3	102,1750
180 3 - 2	103,0000
180 3 - 2 2	134,9602
	136,4612
183 _W 3 - 2	137,2127
184 _W 3 -> 2	137,9632
184 _W 3 - 2	139,4658

Widmo izotopowe wolframu jest na tyle bogate, że w kilku przypadkach następuje koincydencja linii składnika głównego z liniami pierwiastków zanieczyszczeń, utrudniająca lub nawet uniemożliwiająca ich oznaczenie. W tabeli 9 zostały zebrane linie koincydencyjne wolframu wraz z liniami izotopów, których nie można wykorzystać do analizy ilościowej, przy zdolności rozdzielczej spektrometru JMS-01 BM R = 2000.

LINIE KOINCYDENCYJNE WOLFRAMU

Lp.	Linia izoto-	Jon i	i	 n, .e	Jon j
1	23	184 _W 8+	22,9939	22,9898	23 +
2	93	186 _W 2+	92,9772	92,9060	93 _{NIL} +
3	181	.180 _W 1 _H +	180,9547	180,9480	181
4	187	186 _W 1 _H +	186,9621	186,9560	187 _{Re} +
5	195	183W12C+	194;9502	194,9648	195 _{P+} +
6		¹⁸² w ¹² c ¹ H ⁺	194,9560		
6	197	¹⁸³ W ¹⁴ N ⁺	196,9333	196,9606	197 _{Au} +
		182 _W 14 _N 1 _H +	196,9513		
		¹⁸⁴ W ¹² C ¹ H ⁺	196,9587		
7	202	¹⁸⁶ w ¹⁶ C ⁺	201,9492	201,9706	202 _{Ha} +
8	208	$^{184}w^{12}c_2^{+}$	207,9506	207,9766	208 _{Pb} +
9	209	¹⁸⁴ W ¹² C ₂ ¹ H ⁺	208,9587	208,9804	209 _{Bi} +
10	232	¹⁸⁴ w ¹⁶ O ₃ ⁺	321,9356	232,0382	232 _{Th} +
	,	¹⁸³ w ¹⁶ C ₃ ¹ H ⁺	231,9427		

Ponieważ sód, niob, złoto, bizmut, tor są pierwiastkami jednoizotopowymi, nie można oznaczyć ich zawartości z linii jonów jednododatnich. Korzystanie z jonów dwu- lub trójdodatnich pogarsza dość istotnie granicę wykrywalności. Oprócz wymienionych powyżej pięciu pierwiastków nie można także oznaczać pierwiastków gazowych /tlenu, wodoru, azotu oraz gazów szlachetnych/, a także węgla występującego w gazach resztkowych spektrografu. Oznaczanie tantalu jest obarczone znacznym błędem lub także w ogóle niemożliwe, gdyż z materiału tego wykonane są elementy źródła jonów /uchwyty elektrod i szczelina przyspieszająca/.

W tabeli 10 podany jest pełny zestaw linii izotopowych, które wystąpiły na płycie fotograficznej nr 1 naświetlonej próbką wolframu nr 1. Jest to przykładowy wykaz linii i tylko tak może być on traktowany. Każda płyta z widmem masowym stanowi bowiem odrębne indywiduum analityczne, nawet jeśli jest naświetlana tą samą próbką.

Tabela 10

ZESTAWIENIE LINII WYSTĘPUJĄCYCH NA PŁYCIE NAŚWIETLONEJ PROBKĄ WOLFRAMU NR 1

Lp.	MAn+	Jon A ⁿ⁺	Abundancja
1	2	3	4
1	6,502	c ²⁺	1,107
2.	7,001	N ²⁺	99,6337
3	7,500	N ²⁺	0,3663
4	7,793	κ ⁵⁺	93,1
5	7,997	0 ²⁺	99,759
6	8,499	s ⁴⁺ /0 ²⁺	4,22/0,03
7	8,994	AI ³⁺	100
8	9,323	Fe^{6+}/Si^{3+}	91,66/92,21
9	9,741	κ ⁴⁺ .	93,1
10 ·	9,991	Ca ⁴⁺	96,97
11	10,013	B ¹⁺	19,61
12	10,240	κ ⁴⁺	6,88
13	10,388	; Cr ⁵⁺	83,76
14	10,488	1 Cu ⁶⁺	69,09
15 .	10,657	s ³⁺	95,0
16	10,821	Cu ⁶⁺	30,91
17 .	11,009	B ¹⁺	80,39
18	11,187	Fe ⁵⁺	91,66
19	11,322	s ³⁺	4,22
20	11,495	Na ²⁺	100
21	11,656	CI ³⁺	75,77
22	11,992	Mg ²⁺	78,7
23 '	12,000	c ¹⁺	98,893
24	12,129	w ¹⁵ *	26,41
25	12,263	w ¹⁵⁺	30,64
26	12,493	Mg ²⁺	10,13
27	12,586	Cu ⁵⁺	69,09
28	12,736	v ⁴⁺	99,76
29	12,987	$Cr^{4+}/Cu^{5+}/K^{3+}/Mq^{3+}/W^{14+}$	83,76/30,91/93,1/ 11,17/26,41

1	2	3	4 4 4 4
30	13,005	с1+/сн+	1,107
31	13,068	w ¹⁴⁺	14,4
32	13,139	w ¹⁴⁺	30,64
33	13,282	w ¹⁴⁺	28,41
34	13,321	Ca ³⁺	96,97
35	13,485	Cr ⁴⁺ /Fe ⁴⁺ /Al ²⁺	2,38/5,82/100
36	13,654	к ³⁺	6,88
37	13,986	Fe^{4+}/Si^{2+}	91,66/92,21
38	13,996	w ¹³⁺	26,41
39	14,003	N ¹⁺	99,634
40	14,015	CH2+	P. 21
41	1 14,073	w ¹³⁺	14.4
42	14,150	w ¹³⁺	30.64
43	14,234	Fe ⁴⁺	2,19
44	14,304	w ¹³⁺	28,41
45	14,652	Ca ³⁺	2,06
46	14,985	Zr ⁶⁺ /si ²⁺	51,46/3,09
47	15,000	N ¹⁵⁺	0,3663
48	15,011	NH ⁺	
49	15,023	CH3+	A CONTRACTOR OF A
50	15.162	w12+	26 41
51	15,246	w12+	14 4
.52	15,318	Mo ⁶⁺	15.84
53	15.329	w ¹²⁺	30.64
54	15,487	P ²⁺	100
55	15,496	w ¹²⁺	28,41
56	15,651	M0 ⁶⁺	9,04
57	15,732	Cu ⁴⁺	69,09
. 58	15,817	Mo ⁶⁺	15,72
59	15,984	Mo ⁶⁺	16,53
60	15,995	01+	99,76

1	2	3	4
61	16,019	NH2 ⁺	
62	16,031	сн,+	
63	16,151	4 Mo ⁶⁺	9.46
64	16,232	Cu ⁴⁺	30.91
65	16,317	Mo ⁶⁺	23 78
66	16,486	s ²⁺	0.76
67	16,541	w ¹¹⁺	26 41
68	16.632	w ¹¹⁺	14.4
69	16,650	Cr ³⁺ /Mo ⁶⁺	14,4
70	16.723	w ¹¹⁺	4,51/7,05
71	16,905	w ¹¹⁺	28 41
72	16 981	v ³⁺ /s ²⁺	20,41
73	17 003	HO ⁺	77,70/4,22
74	17,026	NH2 ⁺	
75	17,034	?	
76	17,313	Cr ³⁺	83,76
77	17,484	CI ²⁺	75,77
78	17,647	Cr ³⁺	9.55
79	17,979	Cr^{3+}/Fe^{3+}	2,38/5.82
80	17,999	c ⁺	0.204
81	18,011	H ₂ O ⁺	
82	18,034	NH4+	· · · · ·
83	18,195	w ¹⁰⁺	26,41
84	18,295	w ¹⁰⁺	14,4
85	18,381	Mo ⁵⁺	15,84
86	18,395	w ¹⁰⁺	30,64
87	18,483	CI ²⁺	24,23
88	18,595	w ¹⁰⁺	28,41
89	18,645	Fe ³⁺	91,66
90	18,781	Mo ⁵⁺	9.04

1	2	3	4	-1
91	18,981	Fe ³⁺ /Mo ⁵⁺	2,19/15,72	-
92	18,998	F ⁺	100	5
93	19,007	HO ⁺	24	12
94	19,018	H_0+ /?/		3.
95	19,181	Mo ⁵⁺	16,53	2
96	19,312	Fe ³⁺ /Ni ³⁺	0,33/67,85	0
97	19,381	Mo ⁵⁺	9,46	5
98	19,482	κ ²⁺	93,1	83
99	19,581	Mo ⁵⁺	23,78	90
100	19,981	Ca ²⁺	96,97	6
101	19,993	w ⁹⁺	0,135	
102	20,006	HF ⁺ /?/	the state of the second second	12
103	20,216	w ⁹⁺	26,41	E
104	20,328	w ⁹⁺	14,4	24
105	20,439	w ⁹⁺	30,64	-
106	20,481	κ ²⁺	6,88	-
107	20,661	w ⁹⁺	28,41	-
108	20,976	Cu ³⁺	69,09	-
109	21,643	Cu ³⁺	30,91	00
110	21,978	Ca ²⁺	2,06	
111	21,995	CO2+ /?/	CARDINAL ALCONTRACT	12
112	22,476	Zr47	51,46	
113	22,493	w ⁸⁺	0,135	23
114	22,726	Zr ⁴⁺	11,22	22
115	22,743	w ⁸⁺	26,41	54
116	22,869	w ⁸⁺	14,4	22
117	22,976	Zr4+/Mo4+	17,11/15,84	26
118	22,994	Na+/W8+	100/30,64	18
119	23,244	w ⁸⁺	28,41	Bá
120	23,476	Zr44/Mo4+	17,4/9,04	-
121	23,726	Mo ⁴⁺	15,72	00

1	2	3	4
122	23,976	Mo ⁴⁺	16,53
123	23,985	Mg ⁺	78,7
124	24,000	c2 ⁺	97,798
125	24,226	Mo ⁴⁺	9,46
126	24,476	Mo ⁴⁺	23,78
127	24,977	Mo4+	9,63
128	24,986	Mg ⁺	10,13
129	25,001	C2H ⁺	an and an
130	25,472	v ²⁺	99,76
131	25,707	w ⁷⁺	0,135
132	25,970	Cr ²⁺	83,76
133	25,983	Mg ⁺	11,17
134	25,992	w ⁷⁺	26,41
135	26,016	C2H2+	production and
136	26,136	w ⁷⁺	14,4
137	26,279	w ⁷⁺	30,64
138	26,470	Cr ²⁺	9,55
139	26,565	w ⁷⁺	28,41
140	26,969	Cr ²⁺ /Fe ²⁺	2,38/5,82
141	26,981	AI	100
142	27,006	CN ⁺	1 P
143	27,023	C ₂ H ₃ ⁺	the second second
144	27,469	Mn ²⁺	100
145	27,967	Fe ²⁺	91,66
146	27,977	Si ⁺	92,21
147	27,995	co+	98,7
148	28,006	N2 ⁺	99,2687
149	28,031	C2H4+	
150	28,468	Fe ²⁺	2,19

- 1	· 2	3	4
151	28,967	Fe^{2+}/Ni^{2+}	0,33/63,85
152	28,976	Si ⁺	. 4,7
153	29,003	CHC ⁺	Sur
154	29,039	C2H5+	al and and an a
155	29,466	C.,2+	100
156	29,96	$Ni^{2+}/Zr^{3+}/Si^{+}$	26,23/51,46/3,09
157	29,993	W ⁶⁺	0,135
158	29,039	CH20+	
159	30,047	C2H6+	
160	30,302	Zr ³⁺	11,22
161	30,324	w ⁶⁺	26,41
162	30,492	w ⁶⁺	14,4
163	30,635	Zr ³⁺ /Mo ³⁺	17,11/15,84
164	30,658	w ⁶⁺	30,64
165	30,974	Ni ²⁺ /P ⁺	3,66/100
166	30,992	w ⁶⁺	28,41
167	31,018	CH ₃ C ⁺	the Designment of the
168	31,301	Zr ³⁺ /Mo ³⁺	17,4/9,04
169	31,465	Cu ²⁺	69,09
170	31,635	Mo ³⁺	15,72
171	31,970	$-Mo^{3+}/s^{+}/Zr^{3+}$	16,53/95,0/2,80
172	31,990	c2 ⁺	99,52
173	32,302	Mo ³⁺	9,46
174	32,464	Cu ²⁺	30,91
175	32,635	Mo ³⁺	23,78
176	32,971	s ⁺	0,76
177	32,994	C ₂ ⁺	0,0745
178	33,302	Mo ³⁺	9,63
179	33,968	s ⁺	4,22
180	34,969	CI ⁺	75,77

11 10

1	2	3	4
181	35,989	w ⁵⁺	0,135
182	36,389	w ⁵⁺ ·	26,41
183	36,590	w ⁵⁺	14,4
184	36,790	w ⁵⁺	30,64
185	36,966	CI ⁺	24,23
186	37,008	с _з н ⁺	
187	37,191	w ⁵⁺	26,41
188	38,016	C3H2+	
189	.38,964	κ+	93,1
190	39,023	с ₃ н ₃ +	
191	39,963	Ca ⁺ /K ⁺	96,97/0,0118
192	40,031	C ₃ H ₄ ⁺	
193	40,962	κ+	6,88
194	41,039	C ₃ H ₅ ⁺	
195	41,958	Ca ⁺	0,64
196	42,011	C₂H₂O ⁺	
197	42,047	C ₃ H ₆ ⁺	
198	42,959	Ca ⁺	0,146
199	43,018	C₂H₃C ⁺	
200	43,055	с ₃ н ₇ +	
201	43,667	A w ⁶ →5	26,41
202	43,908	A W ⁶⁻⁵	14,4
203	43,955	Ca ⁺	2,06
204	43,989	cc ₂ ⁺	98,9
205	44,063	C ₃ H ₈ ⁺	
206	44,148	A w ⁶ →5	30,64
207	44,629	A W ^{6→5}	28,41
208	44,952	Zr ²⁺	51,46

1	2	3	4
209	44,987	w ⁴⁺	0,135
210	45,453	Zr ²⁺	11,22
211	45,487	w ⁴⁺	26,41
212	45,737	w ⁴⁺	14,40
213	45,95	Zr^{2+}/Mo^{2+}	17,11/15,84
214	45,988	w ⁴⁺	30,64 .
215	46,489	w ⁴⁺	28,41
216	46,952	Zr^{2+}/Mo^{2+}	17,4/9,04
217	47,453	Mo ²⁺	15,72
218	47,953	Zr ²⁺ /Mo ²⁺	2,80/16,53
219	48,453	Mo.2+	. 9,46
220	48,953	Mo ²⁺	23,78
221	49,949	$Cr^{+}/V^{+}/Mo^{2+}$	5,31/0,24/9,63
222	50,016	C4H2+	191 A 1 1 2 - 101 191
223	50,944	v*	99,76
224	51,023	C4H3+	199 11,700 11
225	51,940	Cr ⁺	83,76
226	52,941	Cr ⁺	9,55
227	53,039	C4H5+	1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
228	53,94	Cr ⁺ /Fe ⁺	2,38/5,82
229	54,047	C4H6+	the party and a second
230	54,938	Mn ⁺	100
231	55,055	C4H7+	202 -2,100 001.5- 1 505
232	55,935	Fe ⁺	91,66
233	56,063	C ₄ H ₈ ⁺	1.0 L 10C
234	56,859	A W ⁵⁻⁴	26,41
235	56,935	Fe ⁺	2,19
236	57,172	A W ⁵⁻⁴	14,40
237	57,484	A W ⁵⁻⁴	30,64
238	57,935	Fe ⁺ /Ni ⁺	0,33/67,85
	2	3	4 .
------	---------	---	----------------
2.39	.58,111	A W ⁵⁻⁶⁴	28,41
240	58,933	Co ⁺	100
241	59,931	NI ⁺	. 26,23
242	59,982	w ³⁺	0,135
243	60,316	Ta ³⁺	99,99
244	60,649	w ³⁺	26,41
245	60,983	w ³⁺	14,40
246	61,317	w ³⁺	30,64
247	61,985	w ³⁺	28,41
248	62,929	Cu ⁺	69,09
249	63,928	Ni ⁺ /Zn ⁺ /?/	1,08/48, 89/?/
250	64,928	Cu ⁺	30,91
251	77,8	?	
252	80,866	A W ^{4-→3}	26,41
253	81,311	A W43	14,40
254	81,756	A W ⁴³	30,64
255	82,646	A W ^{4→3}	28,41
256	89,904	Zr ⁺	51,46
257	89,973	w ²⁺	0,135
258	90,474	Ta ²⁺	99,99
259	90,905	Zr ⁺ ⁽	11,22
260	90,974	w ²⁺	26,41
261	91,475	W ²⁺ /WH ²⁺ /?/	14,40
262	91,905	Zr ⁺ /Mo ⁺	17,11/15,84
263	91,975	w ²⁺ /wH ²⁺ /?/	30,64
264	92,476	WH ²⁺ /?/ Re ²⁺ /?/	
265	92,977	w ²⁺	28,41
266	93,478	wH ²⁺ /?/	
267	93,904	Mo ⁺	9,04
268	94,906	Zr ⁺ /Mo ⁺	17,4/15,72
269	95,904	Zr ⁺ /Mo ⁺	2,8/16,53

1	2	3	4
270	96,906	Mot	9,46
271	96,974	wc ²⁺	A State State
272	97,476	wc ²⁺	241
273	97,905	Mot	23,78
274	97,975	wc ²⁺	247 1 24 1 742
275	98,472	TaC ²⁺	99,99
276	98,97	wo ²⁺ /wc ²⁺	12
277	99,473	wc ²⁺	24
278	99,907	Mo ⁺	9,63
279	100	wc ²⁺	246 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
280	101	wo ²⁺	The series a series
281	107	WC22+	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
282	107 5	wo ²⁺	251 7.8 2.5
LOL	107,5	² 2+	25 1 × 1 × 1 × 1 × 1
283	108	WC2	a contraction of the set
284	109	W022+	24 Burnes
285	136,46	A W ³⁻²	26.41
286	137,21	A W3-2	14.4
287	137,96	A W ³⁻²	30,64
288	139,46	A W^{3-2}	28,41
289	179,947	w ⁺	0,135
290	180,949	Ta /WH+	99,99
291	181,948	w ⁺	26,41
292	182,950	w ⁺ /wH ⁺	14,4
293	183,950	W ⁺ /WH ⁺	30,64
294	185	WH ⁺ /Re/?/	
295	185,954	w ⁺	28,41
296	187	WH ⁺ /Re/?/	States and states
297	194	wc ⁺	
298	195	wc ⁺	
299	196	. WC+ /WN+?/	

1	2	3	4
300	197	TaC ⁺ /WN ⁺ ?/	
301	198	WO ⁺ /WC ⁺ /WN ⁺ ?/	
302	199	WO ⁺ /WOH ⁺	•
303	200	WO ⁺ /WOH ⁺ /WN ⁺ ?/	
304 .	201	WOH ⁺	
305	202	wc ⁺	
306	203	WOH ⁺	
307	204	?	
308	205	?	
309	206	wc2 ⁺	
310	207	wc2 ⁺ /wc2H ⁺	
311	208	wc2 ⁺ /wc2 ^{H+}	
312	209	WC,H ⁺	
313	210	wc2+	
314	211	WC2H ⁺	
315	212	wc2 ⁺ /wcc ⁺	
316	213	TAO2+	
317	214	wo2 ⁺ /wco ⁺	
318	215	wc2 ⁺ /wo2H ⁺	
319	216	WC2 ⁺ /WO2H ⁺	
320	217	wc ₂ H ⁺	
321	218	wo ₂ ⁺	100
322	219	wo ₂ H⁺	
323 .	220	?	· 19
324	230	WO3 ⁺	
325	231	wo ₃ ⁺ /wo ₃ ⁺	
326	232	WC3 ⁺ /WO3H ⁺	

1	2	3	4	
327	233	wo ₃ H ⁺		
328	234	wo ₃ ⁺		
329	235	wo ₃ H ⁺		

Pojawianie się i znikanie pewnych linii widma, a także ewentualne ich koincydencje zależą istotnie od jakości i ilości zanieczyszczeń w materiale, jego jednorodności oraz od warunków pracy spektrografu.

Po przeanalizowaniu widma izotopowego i ustaleniu możliwych koincydencji zostały wybrane linie analityczne najbardziej dogodne do oznaczania zanieczyszczeń w próbkach wolframowych. Pełny zestaw tych linii jest zamieszczony w rozdziale dotyczącym granicy wykrywalności.

6.3. Analiza ilościowa wolframu i powtarzalność wyników

Do obliczenia stężenia zanieczyszczeń w wolframie potrzebny był /zgodnie z p. 4/ zestaw względnych czynników czułości RSF/ $\frac{z}{s}$ /, obliczony wg wzoru 19 dla matrycy wolframowej. Odwrotności tych czynników podane są w tabeli 11.

Tabela 11

	Liberta A	1.0	1.0	4.0		1.0	4 . T. S. S. S.
X	(HX/HY)	* (QY/Q)	X)*(\$X/OY	() = FI. +	(MX/MY)) = F AT.	F WAG.
-1	2	3	4	5	6	. 7	8
Li	0.1912	9.4581	0.2081	0,3766	0.0378	0.0142	0.0005
Be	0.3878	10.7789	1.8606	7.7781	0.0490	0.3817	0.0187
В	0.6442	14.1720	1.1681	10.6655	0.0588	0.6278	0.0369
С	0.8424	17.5739	3.9585	58.6084	0.0653	3.8324	0.2504
N	0.0074	20.9830	10.9914	1.7282	0.0762	0.1318	0.0101
0	1.0000	24.3934	8.4709	206.6496	0.0870	17.9955	1.5660
F	1.0000	27.8068	22.6977	631.1904	0.1033	65.2615	6.7438
Na	0.1281	4.9951	0.1719	0.1101	0.1251	0.0138	0.0017
Mg	0.1749	4.3826	0.8419	0.6457	0.1322	0.0854	0.0113
AI	0.3865	4.6722	0.3162	0.5712	0.1468	0.0839	0.0123
Si .	0.5322	5.0856	1.0875	2.9438	0.1528	0.4499	0.0687
Р	0.3955	5.5546	2.9792	6.5450	0.1685	1.1031	0.1859
S	Ú.3271	6.0535	2.8374	5.6189	0.1744	0.9803	0.1710
CI	1.0000	6.5706	7.0648	46.4234	0.1923	8.9297	1.7171
K	0.1061	1.9533	0.0874	0.0182	0.2127	0.0039	0.0008
Ca	0.2100	1.7642	0.3439	0.1275	0.2180	0.0278	0.0061
Sc	0.4077	1.7815	0.4511	0.3278	0.2445	0.0802	0.0196
TI	0.5587	1.8896	0.5335	0.5633	0,2605	0.1468	0.0383
V	0.6104	2.0349	0.5089	0.6322	0.2771	0.1752	0.0486

POPRAWKI OZNACZANIA STĘŻEŃ ZA POMOCA SPEKTROMETRU MAS W WOLFRAMIE /JONY 1+/

11

1	• 2	3	4	5	6	7	8
Cr	0.4703	2.5758	0.5162	0.6254	0.2828	0.1769	0.0501
Mn	0.3307	2.3813	0.7523	0.5927	0.2988	0.1772	0.0530
Fe	0.4933	2.5725	0.9460	1.2008	0.3038	0.3648	0.1109
Co	0.5030	2.7729	0.9412	1.3129	0.3206	0.4210	0.1350
Ni	. 0.5088	2.9815	0.8371	1.2700	0.3193	0.4057	0.1296
Cu	0.3991	4.0237	0.8777	1.2097	0.3457	0.4874	0.1685
Zn	0.1549	3.4209	1.9180	1.0165	0.3556	0.3615	0.1286
Ga	0.3417	3.3451	0.3196	0.3655	0.3792	0.1386	0.0526
Ge	0.4460	3.3956	0.9508	1.4402	0.3948	0.5688	0.2246
As	0.3419	3.5072	2.2838	2.7394	0.4075	1.1165	0.4550
Se	0.2726	3.6533	2.2285	2.2195	0.4295	0.9.34	0.4095
Br	1.0000	3.8207	4.8461	18.5170	0.4346	8,0489	3.4982
RbS	0.0971	1.3272	0.0750	0.0097	0.4649	0.0045	0.0021
Sr	0.1938	1.2132	0.2589	0.0609	0.4766	0.0291	0.0139
Y	0.4247	1.1173	0.4086	0.1940	0.4836	0.0938	0.0454
Zr	0.7205	1.1414	0.5398	0.4440	0.4962	0.2204	0.1094
Nb	0.8550	1.2247	0.5525	0.5787	0.5053	0.2925	0.1478
Mo	0.7864	1.3502	0.6267	0:6655	0.5218	0.3474	0.1813
Ru	0.7676	1.6231	0.7252	0.9037	0.5498	0.4969	0.2732
Rh	0.6596	1.7678	0.7637	0.8907	0.5597	0.4986	0.2791
Pd	0.4420	2.7235	1.1873	1.4296	0.5787	0.8275	0.4789
Ag	0.3375	2.0705	0.8115	0.5672	0.5867	0.3328	• 0.1953
Cd	0.1327	1.9408	1.6115	0.4151	0.6114	0.2539	0.1552
In	0.2874	1.9772	0.2762	0.1570	0.6245	0.0981	0.0613
Sn	0.3573	2.0592	0.7166	0.5273	0.6456	0.3405	0.2199
Sb	0.3107	2.1654	1.3736	0.9244	0.6622	0.6122	0.4055
Te	0.2304	2.2859	1.6251	0.8563	0.6941	0.5944	0.4126
J	1.0000	2.4156	2.9452	7.1154	0.6903	4.9119	3.3905
Cs	0.0925	1.0095	0.0567	0.0053	0.7229	0.0039	0.0029
Ba	0.2068	0.9374	0.1817	0.0353	0.7470	0.0264	0.0198
La	0.5154	0.8476	0.2443	0.1067	0.7556	0.0807	0.0610
Ce	0.4807	0.9509	0.2425	0.1109	0.7622	0.0846	0.0645
Pr	0.4217	0.9574	0.2192	0.0885	0.7664	0.0679	0.0521
Nd	0.3831	0.9636	0.2273	0.0839	0.7846	0.0659	0.0518
Sm	0.2456	0.9756	0.2425	0.0581	0.8178	0.0476	0.0390
Eu	0.2136	0.9813	0.2549	0.0535	0.8266	0.0442	0.0366
Gd	0.4025	0.8754	0.3551	0.1252	0.8553	0.1071	0.0917
Tb	0.4316	0.9922	0.3154	0.1351	0.8699	0.1176	0.1023
Dy	0.3538	0.9974	0.5273	0.1861	0.8839	0.1646	0.1455
Ho	0.3499	1.0025	1.0000	0.3508	0.8971	0.3148	0.2824
Er	0.3736	1.0074	0.5273	0.1985	0.9098	0.1807	0.1644
Tm	0.2914	1.0122	0.2810	0.0829	0.9189	0.0763	0.0701
Yb	0.1982	1.0168	0.3644	0.0735	0.9412	0.0692	0.0652
Lu	0.5094	0.8979	1.0000	0.4575	0.9517	0.4355	0.4145
Hf	0.7210	0.9014	0.5921	0.3849	0.9709	0.3738	0.3629
Ta	0.9262	0.9422	0.9508	0.8299	0.9842	0.8169	0.8041
W	1.0000	1.0000	1.0000	1.0002	1.0000	1.0003	1.0004

1	2	3	4	5	6	7	8	-
Re	0.9222	1.0674	0.9460	0.9314	1.0128	0.9434	0.9555	
Os	0.9287	1.1412	1.2873	1.3644	1.0345	1.4117	1.4605	
lr	0.7924	1.7403	1.6179	2.2313	1.0454	2.3329	2.4389	
Pt	0.7582	1.4304	1.6179	1.7549	1.0611	1.8624	1.9763	
Au	0.4361	1.5408	1.7820	1.1976	1.0714	1.2832	1.3748	
Hg	0.0728	1.4759	2.9183	0.3138	1.0911	0.3425	0.3737	
TI	0.2116	1.5168	0.3428	0.1101	1.1116	0.1224	0.1362	
Pb	0.2309	1.5882	0.7455	0.2735	1,1270	0.3083	0.3475	
Bi	0.2453	1.6761	0.6953	0.2860	1.1367	0.3252	0.3697	
Th	0.6769	0.8452	0.5754	0.3293	1.2621	0.4157	0.5247	
U	0.5808	0.7370	0.3370	0.1443	1.2947	0.1869	0.2421	

Przykładowe zestawienie wyników oznaczeń ilościowych dla próbki wolframu nr 1 /materiał lity/ zawiera tabela 12. Przeliczenia z ppm atomowych na wagowe dokonano wg wzoru 18.

Tabela 12

STĘŻENIE ZANIECZYSZCZEN W WOLFRAMIE

Próbka nr 1

Lp.	Pierwiastek	ppm at	ppm wag.
1	Mo	90	47
2	Zr	.1,1	'0,54
3	Cu	180	62
4	Ni	3,7	1,2
5	Co	0,26	0,083
6	Fe	85	26
7	Mn	0,073	. 0,022
8	Cr	15	4,3
9	V	1,4	0,39
10	Ca	1,9	0,41
11	K	25	5,3
12	CI	2,0	0,39
13	S	68	12
14	Р	2,3	0,36
15	Si	12	1,8
16	AI	5,8	0,85
17	Mg	1,8	0,23
18	F	3,6	0,37
19	В	2,7	0,16

Powtarzalność wyników w spektrografii masowej z iskrowym źródłem jonów można ocenić prawidłowo tylko dla próbki o gwarantowanej jednorodności. Metoda ta zużywa bowiem bardzo niewiele analizowanego materiału, co sprawia, że rozłożenie zanieczyszczeń w objętości elektrod wpływa na precyzję kolejnych oznaczeń. Badana przez nas próbka wolframu nr 1 gwarantowanej jednorodności oczywiście nie miała.

3
0
0
ap
F

POWTARZALNOSC WYNIKCW ANALIZY WOLFRAMU

chy lenie	jednostkowe	0	0,06	0,29	0,21	0,14	0,08	0,51	0,23	0,26	0,84	0,27	0,64	0, 87	0,55	0,91	0,47	0,77	0,71	0,95
Względne od standardowe	calkowite	0,070	0,12	0,30	0,24	0,17	0,13	0,52	0,25	0,29	0,88	0,28	0,65	0,89	0,57	0,92	0,48	0,78	0,72	0,96
Odchy lenie		6,3	0,13	55	0,88	0,045	11	0,038	3,8	0,4	1,6	7,2	1,3	60	1,3	11	2,8	1,4	2,6	2,6
Srednia		60	1,1	180	3,7	0,26	85	0,073	15	1,4	1,9	25	2,0	68	2,3	12	5,8	1,8	3,6	2,7
	5	85	1'1	170	2,9	0,22	95	0,10	12	1,2	1,3	28	2,8	100	1,5	3,8	7,0	1,8	1,8	2,7
e płyty	4	60	1,2	150	3,8	0,28	8	0,068	18	1,5	2,8	30	0,70	28	2,9	15	6,5	2,8	2,3	3,4
w ppm at 2	3	8	1,0	202	2,7	0,21	75	0,020	10	1,0	0,25	23	0,59	16	1	1	2,5	0,4	1,2	0,40
Stężenie	2	96	1,0	128	4,6	0,32	78	0,062	15	1,1	0,75	14	2,5	36	1,0	2,6	3,5	0,5	5,7	0,52
	-	96	1,3	270	4,5	0,25	100	0,12	19	2,0	4,3	32	3,3	160	3,9	26	9,3	3,7	1,1	6,7
Pier-	tek	Wo	Zr	Su	ï	ů	Fe	Mn	ບັ	>	ပီ	¥	Ū	s	4	S:	A	Mg	Ľ	8
0		-	2	3	4	5	9	~	00	0	10	Ξ	12	13	14	15	16	17	18	19

Miarą rozrzutu wyników analizy jest względne odchylenie standardowe w serii pomiarów. Pięć płyt eksponowano kolejno nie wyjmując próbek ze źródła jonów. Wyniki pomiarów oraz obliczeń statystycznych podano w tabeli 13. Zawiera ona średnie arytmetyczne, odchylenia standardowe oraz względne odchylenia standardowe.

Względne odchylenie standardowe dla zanieczyszczeń wolframu waha się od 0,07 do 0,94. Podobny /0,1÷1,0/ zakres wykazuje ten parametr dla molibdenu – innego wysokotopliwego metalu badanego przez nas poprzednio. Największy rozrzut wyników otrzymano dla boru i krzemu /odpowiednio 0,94 i 0,92/. Dla połowy wyników względne odchylenie standardowe jest mniejsze niż 0,30. Dotyczy to głównie pierwiastków metalicznych jak np. Mo, Zr, Cu, Ni, Fe itp. W tabeli 13 podane są wartości całkowitego względnego odchylenia standardowego oraz udziału, jaki wnosi do tego odchylenia niejednorodność rozłożenia zanieczyszczeń w próbce. Z tego zestawienia widać wyraźnie, że za stosunkowo duże względne odchylenie standardowe odpowiedzialna jest ta właśnie niejednorodność.

Ogólnie biorąc, powtarzalność wyników oznaczeń dla zanieczyszczeń w wolframie nie odbiega od powtarzalności zaobserwowanej przez nas dla innych materiałów, sp. w Pt wynosi ona 0,2÷1,4, w Cd 0,1÷0,8, w Ni 0,1÷0,7 itp.

6.4. Granica wykrywalności zanieczyszczeń w wolframie

Granicę wykrywalności G zanieczyszczeń w wolframie można obliczyć, znając transmitancję tła otaczającego linię pomiarową danego zanieczyszczenia /por. p. 5, r-nie 30/. Wartości transmitancji tła odczytane zostały z wykresu mikrofotometrycznego płyty, załączonego jako rysunek 8.

Wyniki obliczeń granicy wykrywalności zanieczyszczeń w próbkach wolframowych zestawione są w tabeli 14.

Tabela 14

GRANICE WYKRYWALNCŚCI G /w ppm at/ ZANIECZYSZCZEM W WOLFRAMIE

Lp.	Pierwiastek	Linia pomiarowa	Abundancja	Granica wykrywal- ności G _w	Linie jonów wolframu
1	2	3	4	5	6
12	Li Be	7	93 100	0,001 0,03	
3	В	- 11	80	0,1	
4	F	19	100	0,02	
5	Mg	24	79	0,01	
6	AI	27	. 100	0,01	
7	Si	28	92	0,06	
8	P	31	100	0,3	
9	S	34	4	5	
10	CI	35	74	0,06	
11	ĸ	39	93	0,002	
12	. Ca	40	97	0,008	
13	Sc	45	100	0,05	
14	Ti	48	74	0,2	

1	. 2	3	4	5	6
15	V	51	99	0,09	
16	Cr	52	84	0,02	
17	Mn	55	100	0,08	
18	Fe	56	92	0.2	
19	Co	59	100	0.4	
20	Ni	60	26	2	tto od ionów
21	Cu	63	69	1.	· 3+
22	Zn	66	28	i	W /60; 60,6;
23	Ga	69	69	0.2	61; 61,3; 62/
24	Ge	74	36	0.9	
25	As	75	100	0.6) ·
26	Se .	80	49	0.4	
27	Br	81	50	0.2	
28	Rb	85	72	0,003	
29	Sr	88	83	0,005	
30	Y	89	1 100	0,05	
31	Zr	90	51	0,07	
32	Mo	98	24	2,4	Also and transferry
33	Ru	104	10	2	no od jonow
34	Rb	103	100	2	W ⁴ /90; 91;
35	Pd	105	22	0,4	,91,5; 92; 93/
36	Aa	103	52	2	
37	Cd Cd	112	24	0,4	
38		112	24	0,5	
30	Se	120	90	0,05	
10	Sh	120	53	0,4	
40	JO	121	5/	0,4	
12	ie	130	34	0,0	
42	G	122	100	0,3	
45	Ba	133	100	0,001	
44	ba	130	/2	0,03	
45	Ca	139	99	0,09	
40	NI4	140	00	0,02	
47		142	12	0,05	
40	5m	152	2/	0,03	i i
50		153	52	0,02	
51	Ga	150	25	0,08	
52		139	100	0,02	
52	Dy	104	28	0,08	
53	Ho	165	100	0,1	
54	Er	168	27	0,09	
55	Im	169	100	0,01	
50	Yb	1/4	32	0,04	tto od jonów
5/	Lu	175	97 .	0,2	w1+ /180. 189.
58	Ht	178	27	0,3	183. 184. 184
59	Os	190	26	1	100, 104; 100/
60	Ir	193	63	1	
61	II	205	71	0,02	
62	U	238	99	0,01	

Rys. 8. a, b, c Wykres mikrofotometryczny widma wolframu

Granice wykrywalności zanieczyszczeń w wolframie są tego samego rzędu co w innych materiałach i zawierają się na ogół w przedziale 0,001÷1 ppm at. Nieliczne tylko pierwiastki /Pd, Ru, Mo, Ni/ mają wyższą granicę wykrywalności, równą kilku ppm at. Linie pomiarowe tych pierwiastków leżą w sąsiedztwie głównych linii wolframu lub wyjątkowo silnych linii Astona, wywołujących wysokie tło w swoim otoczeniu.

Ponieważ zasadniczym celem naszych opracowań jest możliwość informowania technologów o stopniu czystości metali topionych w próżni i oczyszczanych strefowo /a także proszków i spieków metalicznych/, należy porównać granice wykrywalności z wymaganiami czystości stawianymi tego typu materiałom wolframowym. Nie ma, niestety, krajowych norm czystości dla wolframu. Do zestawienia porównawczego /tabela 15/ użyte zostały dane dotyczące dopuszczalnych stężeń zanieczyszczeń w wolframie wysokiej czystości oferowanym w handlu przez renomowanych producentów /Koch-Light Laboratories Ltd/ lub podawane w literaturze specjalistycznej, np. Vacuum Metallurgy [18].

Tabela 15

Stężenia graniczne w ppm wag. Granica wykrywal-Fierwiastek Lp. Koch-Light wg lit. [19] wa lit. [18] ności proszek proszek top. stref. ppm wag. 100 1 As 0,1 0.2 2 Cu 10 0,1 0,5 0,3 3 Fe 10 17 1 0,06 4 10 2 0,001 Ma 1 5 100 30 1:10 Mo 0,5 Ni 20 11 6 1 0,6 Si 20 5 1.10 7 0,001 8 AL 26 0,001 --9 0,01 Ti 30 -4 Ca 1 10 0,002 11 Cr 6 1 0,006 12 K. 10 1:10 0,001 13 Na 5 0,05 0,02 14 In 15 Ge 1-10 0,1 16 Zn 2 0,4 0,1 17 Co 1÷10

ZESTAWIENIE POROWNAWCZE GRANICZNYCH STĘŻEŃ ZANIECZYSZCZEŃ W WCLFRAMIE 3N ORAZ GRANIC WYKRYWALNOŚCI TYCH ZANIECZYSZCZEŃ METCDĄ SPEKTROGRAFII MASOWEJ

Jak wynika z powyższej tabeli wszystkie zamieszczone w niej pierwiastki można oznaczyć na poziomie zgodnym z wymaganiami zagranicznych producentów, lub niższym.

7. ANALIZA 'PROBEK TANTALOWYCH

7.1. Własności tantalu

Tantal jest metalem niebieskoszarym, ciężkim, o silnym połysku. W stanie rodzimym nie występuje.

Jest to pierwiastek o liczbie atomowej 73 i średniej masie atomowej 180,9479. Należy do rodziny dodatkowej wanadowców. Stanowi mieszaninę dwóch izotopów:

180_{Ta} o abundancji 0,012375

181 Ta o abundancji 99,9877%.

z których ¹⁸¹Ta jest izotopem trwałym. Budowę atomu tantalu określają dane: konfiguracja elektronów zewnętrznych – 5d³óp²

promień atomowy

1,46 Å.

Wartościowości najczęściej przyjmowane przez tantal: II, III, IV i VI. Podstawowe własności fizyczne tantalu zostały zebrane w tabeli 16.

Tabela 16

WŁASNCSCI FIZYCZNE TANTALU

Własność fizyczna	tradycyjna	wa SI		
		wg 51	w jednostkach tradycyjnych	w jednostkach SI
emperatura topnienia	°C	K	2996	3269
emperatura wrzenia	°G	Ka	5300	5573
Sestość /20°C/	g/cm	kg/m	16,6	16600
Vspółczynnik przewo- Izenia ciepła	cal/cm.	w/m·deg	0,13	54
Ciepło właściwe	cal/g C	J/kg·deg	0,034	142 5
Ciepło topnienia	cal/g	J/kg	41,5	1,7.10
Ciepło parowania	cal/g	J/kg	995	4,2.106
vlaściwa w 0°C w 500°C	μΩcm μΩcm	വന ജന്മ	13,6 32	1,3,10 ⁻⁷ 3,2,10 ⁻⁷
wardość wg srinella	kg/mm ²	N/m ²	50	5.108
Vytrzymałość na rozciąganie	kg/mm ²	N/m ²	20,6	2.108
otencjały jonizacji I II	eV eV	J	7,88	1,2·10 ⁻¹⁸ 2,6·10 ⁻¹⁸
V ic o	ytrzymałość i rozciąganie tencjały jonizacji I II III	ytrzymałość 2 n rozciąganie kg/mm tencjały jonizacji I eV II eV III eV	ytrzymałość 2 N/m ² n rozciąganie kg/mm ² N/m ² tencjały jonizacji I eV J II eV J III eV J	ytrzymałość rozciąganie kg/mm ² N/m ² 20,6 tencjały jonizacji I eV J 7,88 II eV J 16,2 III eV J 22,2

Własności mechaniczne nie utrudniają procesu przygotowania próbek. W stanie czystym jest bowiem tantal dość plastyczny. Natomiast wysoka temperatura topnienia i parowania oraz temperatura niezbędna do osiągnięcia potrzebnego w procesie iskrzenia ciśnienia pary /np. p = 10⁻⁵Tr para tantalu uzyskuje dopiero przy temperaturze 2407°C, podczas gdy np. para żelaza uzyskuje to samo ciśnienie już w temperaturze 1094°C/ – wpływają w sposób istotny na przebieg wyładowania próżniowego, analogicznie jak w proceșie anglizy wolframu. Powodują znaczne przedłużenie czasu ekspozycji widma, mają także znaczny wpływ na tworzenie się jonów kompleksowych tantalu wzbogacających widmo.

Własności chemiczne tantalu, a zwłaszcza jego odporność na działanie różnych kwasów, utrudniają nieco oczyszcząnie próbek. Tantal jest odporny na działanie większości kwasów nieorganicznych i organicznych, wody królewskiej, nadtlenku wodoru i mieszaniny chromowej. Natomiast łatwo, nawet na zimno, recguje z fluorem. Działają na niego także roztwory zawierające jon fluorkowy, dlatego w procesie przygotowania próbek stosuje się w celu oczyszczenia powierzchni mieszaninę trawiącą HF conc. HNO godwyższonej temperaturze /w warunkach otrzymywania widma/, tantal reaguje z pozostałymi fluorowcami, azotem, wodorem, węglem, borem, krzemem, parą wodną, tlenkiem i dwutlenkiem węgla, chlorowodorem, siarkowodorem, bromowodorem.

W warunkach wyładowania próżniowego jedynie węgiel, tlen, wodćr i azot mogą odgrywać rolę jako reagenty z tantalęm. A ponieważ związki tantalu z tymi reagentami mają charakter stabilnych komplęksćw – ich jony wzbogacają widmo masowe tego pierwiastka. Bardzo licznie wśród tych kompleksów reprezentowane są wodorki tantalu. Ma on bowiem szczególną właściwość pochłaniania wodoru; w temperaturze pokojowej – wodoru atomowego, a w podwyższonej /powyżej 250°C/ także cząsteczkowego.

7.2. Analiza jakościowa widma tantalu

Cgólne wiadomości dotyczące analizy jakościowej widma masowego podane zostaty w p. 3 oraz w pracy [6].

Piyta z widmem tantalu obejmuje zaknes mas atomowych od 6 do 240. Znaleźć więc można na niej serie linii izotopowych tantalu o ładunkach od 1+ do 17+. Izotop Ta, ze względu na swoją małą abundancję, jest wykrywalny tylko do stopnia jonizacji 7+. Linie jonów o wyższym ładunku giną w tle- Tabela 17 zawiera warości $M = \frac{m}{n_{re}}$ dla obserwowanych na płycie linii izotopowych tantalu.

Cprócz wymienionych w tabeli 17 linii w widmie tantalu pojawiają się również linie jonów kompleksowych tego pierwiastka oraz tzw. linie Astona pochodzące od jonów zmieniających ładunek w obszarze analizatorów. Linie jonów kompleksowych starowią pewne utrudnienie w analizie jakościowej i ilościowej ze względu na koincydencję z liniami jonów zanieczyszczeń, tym bardziej, że jony kompleksowe mogą mieć również ładunek 2+. 1 fak np. niemożliwa jest identyfikacja linii Au⁺ /M=197/, a także Au²⁺ /M=98,5/ i Au³⁺ /M=65,65/ ponieważ linie te pokrywają się odpowiednio z liniami TaC⁺, TaC²⁺ i TaC³⁺. Z tego powodu złoto można wykryć w tantalu dopiero przy dużych stężeniach, gdy w widmie występuje linia Au⁴⁺. Ze względu na małą liczbę izotopów tantalu i nikłą abundancję ¹⁸⁰Ta udział linii jonów kompleksowych w widmie tantalu jest jednak znacznie mniejszy niż w widmie wolframu. Duża masa atomowa tantalu wyklucza też możliwość rejestracji na płycie linii pochodzących od jonów molekularnych tantalu, jakkolwiek należy się liczyć z wystąpieniem linii Ta²⁺. W tabeli 18 podane jest zestawienie wzorów

i ras cząsteczkowych związków kompleksowych tantalu w zakresie mas atomowych 6-240.

http://rcin.org.pl

47

GLOWNE LINIE WIDMA TANTALU

Stopień jonizacji	¹⁸¹ Ta /99,9877%/	¹⁸⁰ Ta /0,0123%/
1+	180,9490	179,9475
2+	90,4740	89,9738
3+	60,3160	59,9825
. 4+	45,2370	44,9869
5+	36,1896	35,9895
6+	30,1580	29,9913
7+	25,8498	25,7068
8+	22,6186	a concern de sé
9+	20,1054	
10+	18,0949	
11+ .	16,4499	
12+	15,0790	
13+	13,9191	
14+	12,9249	
15+	12,0632	
16+	11,3093	
17+	10,6440	

Tabela 18

ZWIĄZKI KC MPLEKSCWE TANTALU

Lp.	Wzory jonów	Przybliżone masy cząsteczkowe
100	181 _{Ta} 16 _C 3+	65,6
2	$181_{Ta}12_{C}^{2+}$	96,5
3	181 Ta 14 N2+	97,5
4	181 _{Ta} 16 _C 2+	98,5
5	181 Ta 16 01 H2+	99
6	181 _{Ta} 1 _H +	182
7	¹⁸¹ Ta ¹² C ⁺	193
8	181 _{Ta} 12 _C 1 _H	104
9	181 Ta 14 N+	195
10	181 _{To} 16 ₀ +	197
11	181 _{Ta} 160 ¹ H ⁺	198
12	181 _{Ta} 160 ¹ H ⁺	198
13	181 Ta ¹⁶ O ¹ H ⁺	199
14	181 _{Ta} ¹² C ₂ + ²	205
15	¹⁸¹ Ta ¹² C ₂ ¹ H ⁺	206

Lp.	Wzory jonów	Przybliżone masy cząsteczkowe
16	$181_{T_a} C_2 H_2^+$	207
17	¹⁸¹ ^a ¹⁶ C ⁺ ₂	213
18	¹⁸¹ Ta ¹⁶ O ₂ ¹ H ⁺	214
19	¹⁸¹ Ta ¹⁶ O ₃ ⁺	229

Podane w tabeli kompleksy zawierają jedynie izotop¹⁸¹Ta. Linie jonów komplek-180₇

sowych z izotopem ¹⁸⁰Ta nie są praktycznie wykrywane na naszych płytach. Linie Astona pojawiające się na płytach eksponowanych tantalem podane są w tabeli 19.

Tabela 19

Lp.	Zmiana ładunku	Wartość <u>m</u>
1	180 _{Ta} 7	34,9898
2	$181_{T_a}^7 \longrightarrow 6$	35,1843
3	$180_{Ta}6 - 5$	43,1874
4	181 _{Ta} 6 5	43,4275
5	$180_{Ta} 5 \longrightarrow 4$	56.2336
6	181 _{Ta} 5 4	56 5462
7	180 ₁ 4> 3	79 9767
8	181 _{Ta} 4 -> 3	80 4213
9	180 _{T6} 5> 3	99,9708
10	181 _{Ta} 5> 3	100 5267
11	180 _{Ta} 3 -> 2	134 9606
12	181,3 -> 2	125 7110
13	180, 4 2	135,7110
14	181, 4 -> 2	ok. 180
15	180_ 5 → 2	ok. 181
16	$181 5 \rightarrow 2$	ok. 225
10	Ta	ok. 226,2

ZESTAWIENIE LINII ASTONA DLA TANTALU

Linie jonów kompleksowych i linie Astona na ogół nie przeszkadzają w analizie widma. W kilku przypadkach występują jednak koincydencje uniemożliwiające oznaczanie pewnych zanieczyszczeń śladowych. Wykaz ich zamieszczony jest w to¹ 20.

Lp.	Linia izotopowa	Jon i	 ne	ne	Jon j
1	45	180 _{Ta} 4+	44.9869	44.9559	45sc+
2	198	181 TOCH+	197,9517	197,9675	198 _{Pt} + ·
3	197	181 _{TaO} +	196,9439	196,9665	197 Au+
4	196	181 _{TaNH} +	195,9598	195,9649	196 _{Pt} +
5	195	181 TaN+	194,9520	194,9648	195 _{Pt} +
6	194	181 TaCH ⁺	193,9568	193,9648	194 _{Pt} +

Jak widać z powyższej tabeli oznaczenie skundu i złota jest w zasadzie niemożliwe. Dwa izotopy platyny, które nie są zakłącon – mają tak małą abundancję

/¹⁹²Pt - 0,78% i ¹⁹⁰Pt - 0,01%/, że pierwiąstek ten może być wykływany w tantalu tylko wtedy, gdy jego stężenie jest większe niż 40 ppm.

Cprócz wyżej podanych trzech pierwiastków nie można także oznaczyć pierwiastków gazowych /tlenu, wodoru, azotu i gazów szlachetnych/ oraz węgla, występującego w gazach resztkowych.

W tabeli 21 zestawiono linie izotopowe, które wystąpiły na płycie 'fotograficznej eksponowanej próbką tantalu nr 1. Jest to przykładowy spis linii pochodzących od próbek tantalu technicznego.

Tabela 21

ZESTAWIENIE LINII WYSTĘPUJĄCYCH NA PŁYCIE NAŚWIETLONEJ PROBKĄ TANTALU TECHNICZNEGO

Lp.	MAn+	Jon A ⁿ⁺	Abundancja	
1	2	3	4	
1	6,994	Si ⁴⁺	92,21	01
2	7,001	N ²⁺	99,63	
3	.7,244	Si ⁴⁺	4,70	12
4	7,497	si ⁴⁺ /N ²⁺	3,09/0,36	
5	7,743	P ⁴⁺ .	100	
6	7,997	0 ²⁺	99,759	
7	8,994	AI ³⁺	100	
. 8	9,323	Fe ⁶⁺ /Si ³⁺	91,66/92;21	
9	9,489	Fe ⁶⁺	2,19	
10	9,656	Ni ⁶⁺ /Si ³⁺	67,85/4,7	

http://rcin.org.pl

50

1	2	3	4
11	9,741	к ⁴⁺	93,1
12	9,988	Ni ⁶⁺ /Ca ⁴⁺ /Si ³⁺	26,23/96,97/3,09
13	10,013	B ⁺	19,61
14	10,322	Ni^{6+}/P^{3+}	3,66/100
15	10,388	Cr ⁵⁺	83,76
16	10,644	Ta ¹⁷⁺	99,9877
17	10,657	s ³⁺	95
18	10,788	Cr ⁵⁺ /Fe ⁵⁺	2,38/5,82
19	11,009	B ⁺	80,39
20	11,187	Fe ⁵⁺	91,66
21	11,309	Ta ¹⁶⁺	99,9877
22	11,38	Fe ⁵⁺	2,19
23	11,495	Na ²⁺	100
24	11,587	Ni ⁵⁺	67,85
25	11,655	CI ³⁺	75,77
26	11,992	Mg ²⁺	78,70
27	12,000	c ⁺	98,893
28	12,063	Ta ¹⁵⁺	99,9877
29	12,386	Ni ⁵⁺	3,66
30	12,493	Mg ²⁺	10,13
31	12,735	v ⁴⁺	99,76
32	12,925	Ta ¹⁴⁺	99,9877
33	12,986	Cr ⁴⁺ /K ³⁺ /Mg ²⁺	83,76/93,1/11,17
34	13,005	C ⁺ /CH ⁺	13
35	13,14	?	Margare Sell
36	13,23	Cr ⁴⁺	9,55
37	13,272	Nb ⁷⁺	100
38	13,321	Ca ³⁺	96,97
39	13,48	Cr ⁴⁺ /Fe ⁴⁺ /AI ²⁺	2,38/5,82/100
40	13,654	к ³⁺	6,88
41	13,919	Ta ¹³⁺	99,9877

1	2	3	4	
42	13,98	Fe ⁴⁺ /Si ²⁺	91,66/92,21	1
43	14,003	N ⁺	99,634	1
44	14,015	CH2+		12
45	14.234	Fe ⁴⁺	2 19	ET
46	14,483	Fe ⁴⁺ /Ni ⁴⁺ /Si ²⁺	0 33/67 85/4 7	1.1
47	14,733	C 4+	100	15
48	14,985	Ni ⁴⁺ /Si ²⁺	26 23/3 09	or
49	15,01	NH ⁺	20,20,0,0,	17.
50	15,023	CH_+		- EX
c1	15 070	- 12+		1.55
51	15,0/9	1a 4+	99,9877	20
52	15,233	Ni 6+	1,19	21
53	15,318	Mo	15,84	
54	15,483	Ni /Nb /P /?/	3,66/100	23
, 55	15,651	Mo	9,04	CONST-
56	15,817	Mo ⁰⁺	15,72	25
57	15,983	Ni4+/Zn4+?/Mo6+/S2+	48,89/16,53/95	- 24.
58	15,995	0+	99,759	27.1
59	16,151	Mo ⁶⁺	9,46	30
60	16,31	Mo ⁶⁺	23,78	- 29
61	16,450	Ta ¹¹⁺	99,9877	e
62	16,650	Cr ³⁺ /Mo ⁶⁺	4,31/9,63	-11-
63	16,982	V3+/52+	99,76/4,22	32
64	17,003	HO ⁺	10, 24 , 21	33
65	17,026	NH3+	12 0 x 0 c	NE
66	17,313	Cr ³⁺	83.76	35
67	17,484	CI ²⁺	75.77	36
68	-17,647	Cr ³⁺	9.55	12
69	17,980	Cr ³⁺ /Fe ³⁺	2.38/5.82	86
70	17,999	0+	0.204	74
71	18,010	H _o O ⁺	-,	-00
72	18,095	Ta10+	99,9877	

1	2	3	4
73	18,381	Mo ⁵⁺	15,84
74	18,483	CI ²⁺	24,23
75	18,581	Nb ⁵⁺	100
76	18,645	Fe ³⁺	91,66
77	18,730	As ⁴⁺	100
78	18,78	Mo ⁵⁺	9,04
79	18,979	Fe ³⁺ /Mo ⁵⁺	2,19/15,72
80	18,998	F ⁺ /?/	100
81	19,181	Mo ⁵⁺	16,53
82	19,312	Fe ³⁺ /Ni ³⁺	0,33/67,85
83	19,381	Mo ⁵⁺	9,46
84	19,482	κ ²⁺	93,10
85	19,581	Mo ⁵⁺	23;78
86	19,64	Co ³⁺	100
87	19,978	Ni ³⁺ /Ca ²⁺ /Mo ⁵⁺	26,23/96,97/9,63
88	20,105	Ta	99,9877
89	20,310	N'i ³⁺	1,19
90	20,481	κ ²⁺	8,88
91	20,643	Ni ³⁺	3,66
92	20,976	Cu ³⁺	69,09
93	21,309	Ni ³⁺ /Zn ³⁺ /?/	1,08/48,89
94	21,643	Cu ³⁺	30,91
95	21,978	Ca ²⁺	2,06
96	22,476	Zr ⁴⁺	51,46
97	22,618	Ta	99,9877
98	22,976	Mo ⁴⁺	15,84
99	22,989	Nat	100
100	23,226	Nb4+	100
101	23,476	Mo4+	9,04
102	23,726	Mo4+	15,72
103	23,976	Mo4+	16,53

1	2	3	4	1.15
104	23,985	Mg ⁺	78,70	23
105	24,000	C2+	97,798	
106	24,226	Mo4+	9,46	
107	24,476	Mo ⁴⁺	23,78	
108	24,977	Cr ²⁺ /As ³⁺ /Mo ⁴⁺	4,31/100/9,63	
109	24,986	Mg ⁺	10,13	
110	25,001	C2H ⁺		
111	25,472	v ²⁺	99,76	
112	. 25,707	Ta ⁷⁺	0,0123	
113	25,850	Ta ⁷⁺	99,9877	
114	25,970	Cr ²⁺	83,76	
115	25,983	Mg ⁺	11.17	
116	25,992	w ⁷⁺	26.41	
117	26,004	CN ⁺ /Ca ⁺	19,00	20
110	24 014		19.6.81	
110	20,010	C ₂ H ₂	10,10	
119	26,136	W'+	14,40	
120	26,279	W ⁺	30,64	
121	26,470	Cr ²⁺	9,55	
122	26,565	W'+	28,41	
123	26,969	Cr ²⁺ /Fe ²⁺	2,38/5,82	
124	26,981	AI	100	
125	27,006	CN+	21,75	
126	27,023	C2H3+	- S -	
127	27,469	Mn ²⁺	100	
128	27,967	Fe ²⁺	91.66	
129	27,977	si ⁺	92.21	
130	27,995	co ⁺	98,7	003
131	28,006	Na ⁺	99,687	
132	28,031	CoH, +		
133	28,468	Fe ^{2f 4}	2,19	

1	2	3	4
134	28,967	Fe^{2+}/Ni^{2+}	0,33/63,85
135	28,976	Si ⁺	4,7
136	29,003	CHO ⁺	
137	29, 039	C2H5+	
138	29,466	Co ²⁺	100
139	29,475	Sn ⁴⁺	24.03
140	29,966	Ni^{2+}/Zr^{3+}	26,23/51,46
141	29,974	Si ⁺ , 'Sn ⁴⁺	3,09/32,85
142	29,991	Ta ⁶⁺	0,0123
143	29,980	NC ⁺	H
144	30,011	CH20+	1. 1. 1. 1. 1. 1.
145	30,047	C2H6+	
146	30,158	Ta ⁶⁺	99,9877
147	30,302	Zr ³⁺	11,22
148	30,325	w ⁶⁺	26,41
149	30,465	Ni ²⁺	1,19
150	. 30,492	W ⁶⁺	14,40
151	30,635	Mo ³⁺	15,84
152	30,658	W ⁶⁺	30,64
153	30,97	Ni ²⁺ /Nb ³⁺ /P ⁺ /?/	3,66/100/100
154	30,992	W ⁶⁺	28,41
155	31,302	Mo ³⁺	9,04
156	31,465	Cu ²⁺	69,09
157	31,035	Mo ³⁺	15,72
158	31,968	$Ni^{2+}/Zn^{2+}/Mo^{3+}/S^{+}$	1,08/48,89/16,53/95
159	31,989	0 ₂ ⁺	99, 518
160	32,302	Mo ³⁺	9,46
161	32,464	Cu ²⁺	30,91
162	32,635	Mo ³⁺	23,78
163	32,971	s ⁺	0,76

.1	. 2	3	4	
164	33,302	Mo ³⁺	9,63	het
165	33,968	s ⁺	4,22	
166	34,969	CI ⁺	75,77	akı
167	• 35,977	HCI+	75,517	197
168	35,989	Ta ⁵⁺	0,0123	201
169	36,000	.c ₃ +		921
170	36,189	Ta ⁵⁺	99,9877	051
171	36,389	w ⁵⁺	26,41	181
172	36,590	w ⁵⁺	14,40	142
173	36,790	w ⁵⁺	30,64	ENI
174	36,966	CI ⁺	24,23	344
175.	37,008	C ₃ H ⁺	13 24.100	23.7
176	37,191	w ⁵⁺	28,41	
177	37,461	As ²⁺	100	
178	37,974	HCI ⁺	24,467	147
179	38,016	C ₂ H ₂ ⁺	V ECC, DE	148
180	38 634	5-3+	14.30	441
181	38.965	K+ 5n3+	93 1/7 61	UCI
182	30 023	С н +	73,177,01	101
182	20 201	-3 ² '3	24.02	
194	37,301	sn e_3+	24,03	Set.
104	37,034	5n + + 3+	0,00	803
105	39,904	Ca /sn	96,97/32,85	135
186	40,031	C ₃ H ₄	res.A.	100
187	40,634	Sn ³⁺	4,72	157
188	40,962	κ+	6,88	田在市
189	41,039	C3H5+	939.10	139
190	41,302	Sn ³⁺	5,94	160
191	41,959	Cat	0,64	161
192	42,0106	C ₂ H ₂ O ⁺		267
		44		PÁI

1	2	3	4
193	42,047	C3H6 ⁺	
194	42,959	Ca ⁺	0,146
195	43,018	C2H30+	I State of the second
196	43,055	с ₃ н ₇ +	
197	43,427	A Ta 5	99,9877
198	43,955	Ca ⁺	2,06
199	43,989	cc, ⁺	98,9
200	44,053	C3H8+	
201	44,453	Y ²⁺	100
202	44,952	Zr ²⁺	51,46
203	44,987	To ⁴⁺	0,0123
204	45,237	Ta ⁴⁺	99,9877
205	.45,487	w ⁴⁺	26,41
205	45,737	w ⁴⁺	. 14,4
207	45,953	Mo ²⁺	15,84
208	45,988	w ⁴⁺	30,64
209	46, 453	Nb ²⁺	100
210	46,488	w ⁴⁺	28,41
211	46,952	Mo ²⁺	9,04
212	47,453	Mo ²⁺	15,72
213	47,953	Mo ²⁺	16,53
214	48,453	Mo ²⁺	9,46
215	48,953	Mo ²⁺	23,78
216	49,008	C4H ⁺	
217	49,949	$Cr^{+}N^{+}/Mo^{2+}$	5.31/0.24/9.63
218	50,016	C4H2+	
219	50,944	v ⁺	99.76
220	51,023	C4H3 ⁺	
221	51,940	Cr ⁺	83,76

1	2	3	4	
222	52,031	C4H4+		
. 223	52,45	?		10.34
224	52,941	Cr ⁺	9,55	-
225	53,039	C4H5+		
226	53,94	Cr ⁺ /Fe ⁺	2,38/5,82	1
227	54,047	C4H6+		
228	54,938	Mn ⁺	100	dist.
229	55,055	C4H7		30
230	55,935	Fe ⁺	91,66	201
231	56,063	C4H8+	2 Contraction	202
232	56,546	A Ta 5 4	99,9877	015
233	56,935	Fe ⁺	2,19	204
234	57,070	C4H9 ⁺	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	205
235	57,935	Fe ⁺ /Ni ⁺	0,33/67,85	205
236	57,951	Sn ²⁺	14,3	
237	58,451	Sn ²⁺	7,61	000
238	58,933	Co ⁺	100	0.00
239	58,951	Sn ²⁺	.24,03	100-
240	59,452	Sn ²⁺	8,58	515
241	59,931	Ni ⁺	26,23	212
242	59,951	Sn ²⁺	32,85	212
243	59,982	Ta ³⁺	0,0123	
244	60,316	Ta ³⁺	99,9877	
245	60,649	w ³⁺	26,41	
246	60,931	Ni ⁺ /Sn ⁺²	1,19/4,72	121
247	60,983	w ³⁺	14,40	315
248	61,317	w ³⁺	30,64	219
249	61,928	Ni ⁺	3,66	220
250	61,953	Sn ²⁺	5,94	100
251	61,985	w ³⁺	28,41	145

1	2	3	4	
252	62,929	Cu ⁺	69,09	
253	63,928	Ni ⁺ /Zn ⁺	1,08/48,89	
254	64,928	Cu ⁺	30,91	
255	65,65	TaC ³⁺	99,9877	
256	65,926	Zn ⁺	27, 51	
257	67,925	Zn ⁺	18,57	
258	68,952	Ba ²⁺	71,66	
259	74,921	As ⁺	100	
260	76	1	California Saide State	
261	77	> weglowodory	The Section of the	
262	78		and the second	
263	79		The second second	
264	80,421	A Ta 43	A Charles Mar 1997	
265	88,905	Y ⁺	100	
266	89,904	Zr ⁺	51,46	
267	89,974	W^{2+}/T_{a}^{2+}	0,135/0,0123	
268	90,474	Ta ²⁺	99,9877	
269	90,974	w ²⁺	26,41	
270	91,475	w ²⁺	14,4	
271	91,905	Zr ⁺ /Mo ⁺	17,11/15,84	
272	92,975	w ²⁺	30,64	
273	92,906	Nb+	100	
274	92,977	w ²⁺	28,41	
275	93,904	Mo ⁺	9,04	
276	94,906	Mot	15,72	
277	95,904	Mot	16,63	
278	96,474	ToC ²⁺	THE PROPERTY	
279	96,906	Mot	9,46	
260	97,475	TaN ²⁺	1.1.2.4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	
281	97,905	Mot	23,78	
282	98,975	T₀OH ⁺		
283	99,907	Mo ⁺	9,63	

1	2	3	• 4	
284	100, 527	A Ta 5-3	99,9877	24
285	115,902	Sn ⁺	14,30	
286	116,903	Sn ⁺	7,61	
287	117,901	Sn ⁺	24,03	
288	118,903	Sn ⁺	8,58	
289	119,902	Sn ⁺	32,85	
290	121,903	Sn ⁺	4,72	
291	123,905	Sn ⁺	5,94	
292	135,711	A Ta ³ -2	99,9877	20.
293	136,905	Ba ⁺	11,32	
294	137,905	Bat	71,66	262
295	147	?		263
296	179,947	W ⁺ /Ta ⁺	0,135/0,0123	264
297	180,949	Tat	99,9877	
298	181,948	W ⁺ /TaH ⁺	26,41	
299	182,950	w ⁺	14,40	
300	183,950	w ⁺	30,64	
301	185	WH ⁺	30,64	
302	185,954	w ⁺	28,41	
303	193	TaC ⁺	K and Margare	
304	194	TaCH		
305	195	TON+		
306	196	TaNH ⁺		
307	197	TaO ⁺		
308	198	TaOH ⁺		
309	199	TaOH2+		277
310	205	ToC2		276
311	206	ToC2H ⁺		279
312	207	ToC.H.+		
012		2.2		
313	208	?	Lab and	292

ca. tcbeli 21

: 1	2	3	4
314	213	TaO2+	
315	214	TaC ₂ H [≁]	
316	215	?	
317	• 216	?	
318	. 217	? weglowodory ?	
319	218	?	
320	219	?	

Pełny zestaw linii najbardziej dogodnych do ilościowego oznaczania zanieczyszczeń w tantalu podany został w tabeli 25 w rozdziale dotyczącym granic wykrywalności poszczególnych pierwiastków. Jest to zarazem lista 69 zanieczyszczeń, które można rutynowo oznaczać w tym materiale.

7.3. Analiza ilościowa tantalu i powtarzalność wyników

Do obliczenia stężeń zanieczyszczeń w tantalu niezbędne są /zgodnie z p. 4/ względne czynniki czułości RSF $\frac{z}{s}$ / dla matrycy tantalowej. Cdwrotności tych czynników /obliczonych wg wzoru 19/ zawiera tabela 22.

Tabela 22

POPRAWKI OZNACZANIA STĘŻEN ZA POMOCĄ SPEKTROMETRU MAS W TANTALU /JONY 1+/

		1.0	1.0	4.0		1.0	
·X	(HX/HY)*(QY/QX)#(ØX/Ø	Y) = FI	€ (MX/MY) = F AT.	F WAG.
Li ·	0.2065	19.0379	0.2189	0.4539	0.0384	0.0174	0.0007
Be	0.4187	11.4396	1.9569	9.3740	0.0498	0.4674	0.0233
В	0.6959	15.0407	1.2285	12.8539	0.0598	0.7688	0.0459
С	0.9096	18.6512	4.1632	70.6341	0.0664	4.6928	0.3115
N	0.0080	22.2693	11.5600	2.0816	0.0774	0.1613	0.0125
0	1.0000	25.8888	8.9092	230.6637	0.0884	20.4086	1.8045
F	1.0000	29.5114	23.8720	704.5400	0.1050	74.0130	7.7707
Na	0.1383	5.3013	0.1808	0.1327	0.1271	0.0169	0.0022
Mg	0.1889	4.6513	0.8855	0.7782	0.1343	0.1046	0.0141
AI	0.4173	4.9586	0.3326	0.6884	0.1491	0.1027	0.0153
Si	0.5746	5.3973	1.1437	3.5478	0.1552	0.5509	0.0855
P	0.4270	5.8951	3.1333	7.8879	0.1712	1.3507	0.2312
S	0.3531	6.4246	2.9842	6.7717	0.1772	1.2004	0.2127
CI	1,0000	6.9734	7.4303	51.8182	0.1954	10.1272	1.9786
K	0.1146	2.0730	0.0919	0.0219	0.2161	0.0047	0.0010
Ca	0.2268	1.8724	0.3617	0.1536	0.2215	0.0341	0.0076
Sc	0.4402	1.8907	0.4745	0.3950	0.2485	0.0982	0.0244

1000		1.0	1.0	4.0		1.0	
X	(HX/HY) ,	+ (QY/QX	XØX"¢Y) = FI *	(MX/MY) = FAT.	F WAG.
Ti	0.6032	2.0054	0.5611	0.6789	0.2647	0.1798	v.0476
V	0.6590	2.1597	0.5352	0.7619	0.2815	0.2146	0.0604
Cr	0.5078	2.7337	0.5429	0.7538	0.2874	0.2167	0.0523
Mn	0,3571	2.5273	0.7913	0.7143	0.3036	0.2169	0.0659
Fe	0.5326	2.7302	0.9949	1.4471	0.3086	0.4467	0.1379
Co	0.5431	2.9429	0.9899	1.5823	0.3257	0.5155	0.1679
Ni	0.5493	3.1642	0.8804	1.5306	0.3245	0.4967	0.1612
Cu	0.4309	4.2703	0.9231	1.6989	0.3512	0.5968	0.2096
Zn	0.1672	3.6306	2.0172	1.2250	0.3613	0.4427	0.1599
Ga	0.3690	3.5502	0.3361	0.4405	0.3853	0.1698	0.0654
Ge	0.4816	3.6037	1.0000	1.7357	0.4012	0.6964	0.2794
As	0.3692	3.7222	2.4020	3.3014	0.4141	1.3672	0.5661
Se	. 0.2943	3.8772	2.3438	2.6748	0.4364	1.1674	0.5094
Br	1.0000	4.0549	5.0969	20.6688	0.4416	9.1283	4.0310
Rb	0.1049	1.4086	0.0789	0.0117	0.4724	0.0055	0.0027
Sr	0.2092	1.2875	0.2723	0.0734	0.4842	0.0356	0.0173
Y	0.4586	1.1858	0.4297	0.2338	0.4913	0.1149	0.0565
Zr	0.7780	1.2114	0.5677	0.5351	0.5041	0.2698	0.1361
ivb	0.9231	1.2998	0.5811	0.6974	0.5135	0.3581	0.1839
Mo	0.8491	1.4329	0.6591	0.8021	0.5302	0.4253	0.2256
Ru	0.8288	1.7226	0.7627	1.0891	0.5586	0.6014	0.3399
Rh	0.7122	1.8762	0.8033	1.0734	0.5687	0.6106	0.3473
Pd	0.4773	2.8904	1.2488	1.7230	0.5880	1.0133	0.5959
Aa	0.3644	2.1974	0.8535	0.6835	0:5961	0.4076	0.2430
Cď	0.1432	2.0598	1.6948	0.5003	0.6212	0.3108	0.1931
In	0.3103	2.0984	0.2905	0.1892	0.6346	0.1201	0.0763
Sn	0.3858	2.1855	0.7536	0.6355	0.6559	0.4169	0.2735
Sb	0.3855	2.2981	1.4446	1.1140	0.6729	0.7497	0.5045
Te	0.2488	2.4260	1.7092	1.0319	0.7052	0.7278	0.5133
J	1.0000	2.5637	3.0976	7.9422	0.7013	5.5706	3.9069
Cs	0.0999	1.0713	0.0596	0.0064	0.7345	0.0047	0.0035
Ba	0.2233	0.9948	0.1911	0.0425	0.7590	0.0323	0.0246
La	0.5565	0.8995	0.2569	0.1286	0.7677	0.0988	0.0759
Ce	0.5190	1.0092	0.2551	0.1337	0.7744	0.1036	0.0802
Pr	0.4553	1.0160	0.2305	0.1067	0.7787	0.0831	0.0648
Nd	0.4136	1.0227	0.2391	0.1012	0.7971	0.0807	0.0644
Sm	0.2652	1.0354	0.2551	0.0701	0.8309	0.0583	0.0485
Eu	0.2307	1.0414	0.2681	0.0644	0.8398	0.0542	0.0455
Gd	0.4346	0.9290	0.3734	0.1508	0.8690	0.1311	0.1140
Tb	0.4600	1.0530	0.3317	0.1628	0.8838	0.1440	0.1273
Dy	0.3820-	1.0586	0.5545	0.2243	0,8981	0.2015	0.1.10
Ho	0.3778	1.0639	1.0000	0.4020	0.9115	0.3665	0.3341
Er	0.4034	. 1.0692	0.5545	0.2392	0.9244	0.2212	0.2045
Tm	0.3146	1.0742	0.2955	0.0999	0.9336	0.0934	0.0872
Yb	0.2140	1.0791	0.3832	0.0886	0.9563	0.0848	0.0811
Lu	0.5500	0.9530	1.0000	0.5242	0.9670	0.5070	0.4903

		1.0	1.0	4.0		1.0	
X	(HX/HY)	* (QY/QX	WCX/Ø	l = FI +	(MX/MY)	=FAT.	F WAG.
Hf	0.7785	0.9567	0.6227	0.4639	0.9864	0.4577	0.4515
Ta	1.0000	1.0000	1.0000	1.0002	1.0000	1.0003	1.0004
W	1.0797	1.0613	1.0517	1.2054	1.0160	1.2249	1.2446
Re	0.9957	1.1328	0.9949	1.1225	1.0290	1.1:52	1.1888
Os	1.0027	1.2112	1.3539	1.6444	1.0511	1.7286	1.8171
Ir	0.8555	1.8469	1.7016	2.6892	1.0622	2.8566	3.0343
Pt	0.8186	1.5181	1.7016	2.1150	1.0782	2.2805	2.4588
Au	0.4708	1.6352	1.8742	1.4433	1.0885	1.5712	1.7104
Ha	0.0786	1.5663	3.0693	0.3782	1.1086	0.4193	0.4649
TI	0.2285	1.6097	0.3605	0.1327	1.1295	0.1499	0.1694
Pb	0.2493	1.6856	0.7841	0.3296	1.1450	0.3775	0.4323
Bī	0.2649	1.7788	0.7313	0.3447	1.1549	0.3981	0.4599
Th	0.7309	0.8970	0.6051	0.3968	1.2824	0.5090	0.6527
U	0.6271	0.7822	0.3544	0.1739	1.3155	0.2289	0.3011

Frzykładowe wyniki obliczeń dla dwóch próbek tantalu technicznego /nr 1 i nr 2/ podane są w tabeli 23.

Tabela 23

Lp.	Pierwigstek	Próbka	nr 1	Próbka nr 2	
		ppm at	ppm wag	ppm at	ppm wag
1	W	750	750	880	890
2	Ba	-		0,024	0,018
3	Snl	-		3,7 ·	2,4
4	Mo	280	150	330	170
5	Nb	80	41	190	97
6	Zr		-	2,2	1,1
7	Y ·	-	-	0,01	0,061
3	As	12	4,9	7,6	3,1
9	Zn	1,5	0,51	0,8	0,26
1)	Cu	5,8	0,27	3,2	1,1
11	Ni	200	64	340	110
12	Co	1,5	0,48	4,9	1,6
13	Fe	1000	310	2300	710
14	Mn	0,08	0,002	0,2	0,06
15	Cr	60	17	85	24
16	V	-	-	1,5	0,42
17	Ca	2,8	0,61	3,7	0,81
13	K	1,5	0,33	2,9	0,63
19	CI	15	3,0	21	4,2
2)	S	85	15	179	31
2	Si	300	45	270	41
22	AI	53	8	74	11
23	Mg	1,8	0,23	2,6	0,34
21	Na	15	1,9	4,1	0,53
25	F	-	-	8,2	0,82
25	B		the Hrein ore	2,5	0,15

STĘŻENIA ZANIECZYSZCZEN W TANTALU

W celu sprawdzenia powtarzalności wyników i określenia względnego odchylenia standardowego wyników pomiarów eksponowano 5 płyt próbką nr 2 w tych samych warunkach pracy spektrometru, a wyniki obliczeń z tych płyt poddano analizie statystycznej. Stężenia zanieczyszczeń w ppm atomowych oraz wyniki analizy statystycznej tych wartości podane są w tabeli 24.

Powtarzalność wyników oznaczeń jest typowa dla spektrografii masowej. Względne odchylenie standardowe zawiera się w granicach 0,1-0,7. Jedynym wyjątkiem jest tu bor, którego względne odchylenie standardowe wynosi aż 1,0. Wynik ten sugeruje dość znaczną niejednorodność rozłożenia boru w badanej próbce. Ponadto pierwiastki: cyrkon, itr, cynk oraz mangan o stężeniach bliskich granicy wykrywalności /patrz tabela 25/ nie są wykrywane na wszystkich płytach. W tantalu analogicznie jak w wolframie, stosunkowo duże względne odchylenie standardowe spowodowane jest niejednorodnością rozłożenia zanieczyszczeń w próbce. Wskazuje na to wyraźnie porównanie dwóch ostatnich kolumn tabeli 24.

7.4. Granica wykrywalności zanieczyszczeń w tantalu

Metoda obliczania granicy wykrywalności została szczegółowo opisana w p. 5. Do przeprowadzenia obliczeń potrzebny jest wykres mikrofotometryczny płyty eksponowanej tantalem, z którego odczytuje się wartości transmitancji tła otaczającego wybrane do pomiaru linie izotopowe. Wykres ten załączony został jako rysunek 9.

Wyniki obliczeń podane są w tabeli 25. W tabeli tej zostały podane również linie jonów tantalu, dające w swoim otoczeniu duże tło, co znacznie podwyższa granice wykrywalności pierwiastków, których linie znajdują się w bliskim sąsiedztwie np. wolframu, cyrkonu, molibdenu, niobu, żelaza, miedzi, niklu oraz tytanu.

Granice wykrywalności tych pierwiastków są rzędu kilku ppm at. Tak wysoką granicę wykrywalności mają też pierwiastki, których oznaczenie z konieczności bazuje na liniach izotopów o małej abundancji. Tu przykładem będzie ołów Pb, który może być oznaczony z linii izotopu 204 Pb o A = 1,48%, oraz platyna oznaczona z linii izotopu 192 Pt o A = 0,8%, ponieważ linie pozostałych izotopów przykryte są koincydencyjnymi liniami jonów kompleksowych tantalu.

Sumując: z jednej płyty eksponowanej tantalem można oznaczyć:

- 63 pierwiastki z granicą wykrywalności 0,001-1 ppm at
- 5 pierwiastków z granicą wykrywalności rzędu kilku ppm at

- 1 pierwiastek /Pt/ z granicą wykrywalności 40 ppm at.

Tabela 26 stanowi zestawienie wyników analizy tantalu oczyszczanego na drodze topienia wiązką elektronową oraz granic wykrywalności odpowiednich zanieczyszczeń uzyskanych naszą metodą.

Porównanie dwóch szeregów wartości pozwala przypuszczać, że granice wykrywalności w metodzie spektrometrii masowej są wystarczające, aby zanalizować próbki tantalu zarówno technicznego jak i wysokiej czystości. Stężenie zanieczyszczeń w tantalu, zamieszczone w tabeli 26, podajemy zgodnie z literaturą specjalistyczną [18], ponieważ nie dysponujemy normami dla tantalu wysokiej czystości.

http://rcin.org.pl

65

Tabela 24

PCWTARZALNOSC WYNIKOW ANALIZY TANTALU

Względne odchylenie alkowite lednostkowe 0,42 0,015 0,36 0,28 0,31 0,45 0,45 0,62 standardowe 0,300,460,46 0,33 0,63 0,43 0,11 0,37 Cdchylenie standardowe ary tme-Srednia tyczna 8 750 750 0,03 4,2 300 2,8 8,5 0,85 380 0,15 95,8 1,8 0,15 95,8 1,8 22,9 22,9 250 250 22,9 25,8 25,8 22,8 23,8 23,0 23,0 24,2 Stężenie w ppm at z płyty 550 550 0,02 2,1 410 1,7 203 3,4 203 82 -5,2 5,2 230 910,07 910,29 4,0 910,29 4,0 190 190 190 3 0,008 3,2 78 -5,5 0,68 4,1 210 4,1 2,5 2,5 2,5 2,3 54 54 54 4 0 00 5 **Pierwiastek** ±ี่บ>บ⊻บ A Na FO ZU AS A ZY NO is ė

http://rcin.org.pl

66

Tabela 25

GRANICE WYKRYWALNOSCI G /ppm at/ ZANIECZYSZCZEN W TANTALU

Lp.	Pierwiastek	Linia pomiarowa	Abundancja x%	Granica wy- krywalności G ppm at	Linie jonów tantalu
1	2	3	4	5	6
1	Li	7	92,6	0,0003	
2	Be	9	100,0	0,008	. 1
3	В	11	80,4	0,05	
4	F	19	100,0	0,01	
5	Na	23	100,0	0,001	
6	Mg	24	78,7	0,01	
7	AI	27	100,0	0,008	
8	Si	28	92,2	0,06	
9	Р	31	100,0	0,2	the edd in the
10	S	32	95,0	0,2	T-+4 /45
10	CI	35	75,8	0,05	10 /43;
12	ĸ	39	93,1	0,001	43,2/
13	Ca T.	40	96,9	0,008	
14		48	73,9	0,1	
15	v	51	99,8	0,07	
10		52	83,8	0,08	
18	- Min	55	100,0	0,07	
10	Co	50	91,7	0,2	
20	NI NI	58	100,0	0,9	
21	Cu	63	60 1		
22	Zn	66	27.8		
23	Go	69	60.4		the ed tender
24	Ge	74	36 5	0,1	
25	As	75	100.0	0,5	Ta /60;
26	Se	80	49.8	3	60,3/
27	Br	79	50.5	0.3	
28	Rb	85	72.1	0.002	
29	Sr	88	82,6	0.1	
30	Y	89	100,0	0.3	
31	Zr	94	17,4	2	tło od jonów
32	Nb	93	100,0	0,6	Ta+2 /90.
33	Mo	98	23,8	2	90.5/
34	Ru	103	31,6	1	
35	Rh	103	100,0	0,4	
36	Pd	106	27,3	2	
37	Ag	107	51,8	0,4	
38	Cd	114	28,8	0,5	
39	In	115	95,7	0,05	
40	Sn	120	32,8	0,6	
41	Sb	121	57,3	0,6	
42	Te	128	31,8	0,8	

1	2	3	4	5	6
43	J	127	100,0	0,3	
44	Cs	133	100,0	0,002	
45	Ba	138	71,7	0,008	1-9-1
46	Ce	140	88,5	0,02	
47	Pr	141	100,0	0,01	- A STATE
48	Nd	142	27,1	0,04	di sale
49	Sm	152	26,7	0,03	5
50	Eu	153	52,2	0,02	
51	Gd	158	24,8	0,09	
52	Tb	159	100,0	0,03	1.0
53	Dy	164	28,1	0,1	
54	Ho	165	100,0	0,2	
55	Er	166	33,4	0,1	And a
56	Tm	169	100,0	0,02	
57	Yb	174	31,8	0,07	01
58	Lu	175	97,4	0,5	1000
59	Hf	178	27,1	0,5	12.01
60	W	184	30,6	1	tło od jonów
61	Re	187	62,9	0,4	T +1 (100
62	Os	192	41,0	0,6	la /180;
63	lr	191	37,3	1	181/
64	Pt	192	0,8	40	U.ST.
65	Hg	202	29,3	0,2	1.1.1.1.1.1
66	TI	203	29,5	0,07	19
67	Pb	. 204	1,5	3	20.
68	Bī	209	100,0	0,05	115
69	U	238	99,3	0,005	1

Tabela 26

ZESTAWIENIE POROWNAWCZE GRANICZNYCH STĘŻEŃ ZANIECZYSZCZEM W TANTALU 3N ORAZ GRANIC WYKRYWALNOŚCI TYCH ZANIE ZYSZCZEM METODĄ SPEKTROGRAFII MASCWEJ

Lp.	Pierwiastek	Stężenie zanieczyszczeń w tantalu 3N, po topieniu wiązką elektronową /18/ ppm at	Granica wykrywal ności G _w ppm at	
1	2	3	4	
1	AI	<1	0,008	
2	Ba	1	0,008	
3	Ca	<1	0,008	
4	Co.	<1	0,9	
5	Cr.	1	0,08	
6	I Cu	<1	1	
7	Fe	<1	0,2	
8	K	41	0.05	
9	Mg.	<1	0,01	
10	Mo	40	2	

68

1 2		3	4	
11	Na	1	0,001	
12	Ni	41	1 1	
13	Si	10	0,06	
14	Ti	5	0,1	
15	Zn	<1	1	

8. PODSUMC WANIE WYNIKOW

Opracowana m. toda analizy śladowej wolframu i tantalu za pomocą spektrografu masowego z iskrowym źródłem jonów pozwala na oznaczenie 57 pierwiastków zanieczyszczeń w wolframie i 63 pierwiastków zanieczyszczeń w tantalu, w granicach stężeń 1 \div 10⁻⁷%, z granicą wykrywalności G_w \leq 1 ppm at. Względne odchylenie standardowe, będące miarą błędu przypadkowego oznaczeń, zawiera się w przedzia-

le 0,1 do 0,9. Spowodowane jest ono głównie niejednorodnością rozkładu zanieczyszczeń w badanych próbkach. Ze względu na brak wzorców tantalowych i wolframowych nie można określić błędu systematycznego analizy.

Dla zanieczyszczeń w wolframie uzyskuje się następujące granice wykrywalności G

0,01 ppm at	Z	Gw	dla	pierwiastków	Li, F, Mg, K, Ca, Rb, Ca,
0,1 ppm at	7	G _w ≯ 0,01 ppm	at		Be, B, F, Si, Cl, Sc,V, Cr, Mn, Sr, Y, In, Ba, La, Ce, Nd, Sm, Fu, Gd, Th, Dy, Fr
1 ppm at	2	G., > 0,1 ppm	at	n	Tm, Yb, Tl P, Ti, Fe, Co, Cu, Zn, Ga,
		w			Ge, As, Se, Zr, Rh, Ag, Cd, Sn, Sb, Te, J, Lu, Hf, Cs, Ir
10 ppm at	>	G _w >1 ppm at		н	S, Ni, Mo, Ru, Pd
Dla zanieczys	szcz	eń w tantalu uzy	vsku	e się następu	jące granice wykrywalności G _w :
0,01 ppm at ;	>0	w	dla	pierwiastków	Li, Be, F, Na, 1/g, Al, K, Ca, Rb, Cs, Ba, Pr, U
0,1 ppm at 🗦	> (G > 0,01 ppm at w	r		B, Si, Cl, Ti, V, Cr, Mn, Ga, Sr, In, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, Yb, Tl,
1 ppm at 🐊	, (G _w > 0,1 ppm a	ŀ	"	P, S, Fe, Co, Ni, Cu, Zn, Ge, As, Br, Y, Nb, Ru, Ag, Cd, Sn, Su, Sb, Te, J, Ho, Lu, Hf, W,
					Re, Cs, Ir, Hg

10 ppm at ≽ G > 1 ppm at dla pierwiastków Se, Zr, Mo, Pd, Pt

Uzyskane granice wykrywalności są podobne do osiąganych w innych europejskich laboratoriach spektrografii masowej. Metoda spektrografii masowej może być wykorzystana z dobrą wykrywalnością do szybkich półilościowych analiz wolframu i tantalu, a szczególnie do analiz porównawczych w technologii otrzymywanic materiałów wysokiej czystości.

69

9. LITERATURA

- 1. Ahearn A.J.: Mass Spectrometric Analysis of Solids, Elsevier, 1966
- 2. Ahearn A.J.: Trace Analysis by Mass Spectrometry, Academic Press, New York, 1972
- Czupachin, S.M., Kriuczkowa O.I., Ramiendik G.I.: Analiticzeskije Wozmoźnosti Iskrowoj Mass--Spiektromietrii, Atomizdat, Moskwa, 1972
- 4. Dietze H.J.: Massenspektroskopische Spurenanalyse, Ak. Verlag, Leipzig, 1975
- 5. Kienitz H.: Massenspektrometrie, Verlag Chemie GmbH, Weinheim/ Bergstrasse, 1968
- Patryas Z., Bukowski J., Litwin J.: Analiza platyny i rodu za pomocą spektrometru masowego, WEMA, Warszawa, 1974
- Praca zbiorowa: Spurenanalyse in hochschmelzenden Metallen, VEB Deutscher Verlag f
 ür Grundstoffindustrie, Leipzig, 1970
- Bukowski J.V: Ocena dokładności analizy ilościowej za pomocą spektrografu masowego ze źródłem iskrowym, Opracowanie ONPMP, Warszawa, 1975
- 9. Franzen J., Maurer K.H., Schuy K.D.: Z. Naturvorschg., 21a, 37-62 /1966/
- 10. Vidal G.; Galmard P., Lanusse P.: ONERA, 125 /1968/
- 11. Bukowski J.: Detection Limit in Spark Source Mass Spectrography, Materialy CS1, Praha 1977
- 12. Liteanu G., Riča J.: Microchimida Acta, 745-757 /1973/
- 13. Kaiser H.: Anal. Chem., 42, 26A /1970/
- 14. Svoboda V., Gerbatsch R.: Z. Anal. Chem., 242, 1 /1968/
- 15. Nalimov V.V., Nedler V.V.: Zavad. Labor., 27, 861 /1961/
- 16. Stolarz St., Rutkowski W.: Wolfram i Molibden, Warszawa 1961
- 17. Poradnik fizykochemiczny, WNT, Warszawa 1974
- 18. Winkler O., Bakish R.: Vacuum Metallurgy, Elsevier, New York, 1971
- 19. Cheney R.F.: Progress in powder Metallurgy, N.Y., 1972, 118 p

http://rcin.org.pl

- HOMMW WIGHT
| SPIS TRESC | 1 |
|------------|---|
|------------|---|

1.	Wstęp	3
2.	Otrzymywanie widma masowego na płytach fotograficznych	3
	2.1. Aparatura	3
	2.2. Przygotowanie próbek	4
	2.3. Parametry pracy spektrografu masowego i wywoływanie płyt	
	fotograficznych	5
3.	Analiza jakościowa	6
4.	Analiza ilościowa i precyzja oznaczeń	6
5.	Granica wykrywalności	14
6.	Analiza próbek wolframowych	19
	6.1. Własności wolframu	19
	6.2. Analiza jakościowa widma wolframu	22
	6.3. Analiza ilościowa wolframu i powtarzalność wyników	38
	6.4. Granica wykrywalności zanieczyszczeń w wolframie	4:
7.	Analiza probek tantalowych	46
	7.1. Własności tantalu	4
	7.2. Analiza jakościowa widma tantalu	47
	7.3. Analiza ilościowa tantalu i powtarzalność wyników	61
	7.4. Granica wykrywalności zanieczyszczeń w tantalu	64
8.	Podsumowanie wyników	69
9.	Literatura	70

•

71

.

ч.

SPIS TABEL

Tabela 1. Optymalne parametry pracy spektrografu

- Tabela 2. Wartości wariancji transmitancji w funkcji transmitancji
- Tabela 3. Transmitancia linii na tle
- Tabela 4. Własności fizyczne wolframu
- Tabela 5. Wydajność jonowa i dane termodynamiczne Al, Fe, Cu i W
- Tabela 6. Główne linie widma wolframu
- Tabela 7. Wzory i masy cząsteczkowe jonów kompleksowych wolframu
- Tabela 8. Zestàwienie linii Astona dla wolframu
- Tabela 9. Linie koincydencyjne wolframu
- Tabela 10. Zestawienie linii występujących na płycie naświetlonej próbką wolframu nr 1
- Tabela 11. Poprawki oznaczania stężeń za pomocą spektrometru mas w volfrancie
- Tabela 12. Stężenia zanieczyszczeń w wolframie, próbka nr 1
- Tabela 13. Powtarzalność wyników analizy wolframu
- Tabela 14. Granice wykrywalności G /w ppm at/ zanieczyszczeń w wolframie
- Tabela 15. Zestawienie porównawcze granicznych stężeń zanieczyszczeń w wolframie 3N oraz granic wykrywalności tych zanieczyszczeń metodą spektrografii masowej
- Tabela 16. Własności fizyczne tantalu
- Tabela 17. Główne linie widma tantalu
- Tabela 18. Związki kompleksowe tantalu
- Tabela 19. Zestawienie linii Astona dla tantalu
- Tabela 20. Linie koincydencyjne tantalu
- Tabela 21. Zestawienie linii występujących na płycie naświetlonej próbką tantalu technicznego
- Tabela 22. Poprawki oznaczania stężeń za pomocą spektrometru mas w tantalu
- Tabela 23. Stężenia zanieczyszczeń w tantalu
- Tabela 24. Powtarzalność wyników analizy tantalu
- Tabela 25. Granice wykrywalności G /w ppm at/ zanieczyszczeń w tantalu Tabela 26. Zestawienie porównawcze granicznych stężeń zanieczyszczeń w tantalu 3N oraz granic wykrywalności tych zanieczyszczeń metodą spektrografii masowej

http://rcin.org.pl Wema - 250+25 - 529/79-2/C Druk: Wema Zakł. Poligraficzny 439/79

1

.

.

