Ryszard JABŁOŃSKI

INSTYTUT TECHNOLOGII MATERIAŁÓW ELEKTRONICZNYCH, WARSZAWA

Widmo EPR transmutowanego krzemu

1. WSTEP

Badania centrów radiacyjných w krzemie powstałych na skutek napromieniowania neutronami i innymi cząstkami były prowadzone jeszcze w latach pięćdziesiątych [1]. Szczególne zainteresowanie tym problemem wynikło z zastosowania metody transmutacji krzemu w fosforze przy napromieniowaniu neutronami cieplnymi.

Metoda ta pozwala na uzyskanie krzemu o dużej jednorodności rezystywności. Technologia wytwarzania takiego krzemu jest skomplikowana, a szczególne znaczenie ma technologia wygrzewania centrów radiacyjnych.

W powyższym procesie istotne jest poznanie mechanizmów powstawania centrów oraz wpływ czasu wygrzewania i temperatury na ich zanikanie.

Artykuł ten, dotyczący identyfikacji defektów metodą Elektronowego Rezonansu Paramagnetycznego, jest fragmentem prac nad technologią wytwarzania krzemu domieszkowanego na drodze transmutacji.

2. PRZYGOTOWANIE PRÔBEK I PRZEPROWADZENIE POMIARÔW

Do badań użyto próbek krzemu, w których przewidywana koncentracja fosforu, wskutek procesu transmutacji, wynosiła dla jednej grupy próbek $4 \ge 10^{14}$ cm⁻³ oraz w drugiej $4,5 \ge 10^{15}$ cm⁻³. Próbki miały kształt walca o długości 5 mm i średnicy 3 mm. Do walca było płaszczyzną /110/ otrzymaną za pomocą orientacji rentgenowskiej. Po obróbce mechanicznej próbki były trawione w roztworze 95% HNO₃ i 5% HF.

http://rcin.org.pl

7

Pomiary przeprowadzono na spektrometrze EPR pasmo X firmy Radiopan typ SE/X-2542 w temperaturze pokojowej, część pomiarów wykonano na spektrometrze produkcji Politechniki Wrocławskiej wyposażonym w przepływowy układ helowy firmy Oxford Ins. zapewniający pomiary EPR w zakresie od temperatury pokojowej do temperatury ciekłego helu.

Badane próbki wygrzewane były w atmosferze argonu w temperaturze do 500°C, w odstępach co kilkadziesiąt stopni. Każdy cykl wygrzewania trwał 30 minut.

Intensywność otrzymywanego widma porównywano z wzorcem Al₂0₃:Cr³⁺ umieszczonym wewnątrz rezonatora pomiarowego.

3. WIDMO EPR

8

Ze względu na złożoną postać widma pomiary ograniczono w zasadzie do trzech podstawowych kierunków krystalograficznych C2, C3, C4. Szerokość linii wynosiła około 1,5 Oe.

Do interpretacji otrzymanego widma skorzystano ze stałych hamiltonianu spinowego podanych w literaturze [1, 2, 4, 5, 6] opisujących defekty P1, P3, P6, A5, A3 zaniedbując słabe linie struktury nadsubtelnej.

W oparciu o pracę [4] przyjęto do obliczeń hamiltonian z dokładnością do wyrazów struktúry subtelnej w następującej postaci:

$$\chi = \tilde{g}\beta H \tilde{S} + \tilde{S} \tilde{D} \tilde{S}$$
 /1/

Rozwiązaniem powyższego hamiltonianu metodą rachunku zaburzeń będzie wyrażenie na energię przejścia w postaci:

$$hv = g \beta H + D(M-1/2)$$
 /2/

M - w zależności od spinu przyjmuje wartość 1 lub 1/2 h - stała Planck'a 6,6254 x 10^{-27} erg.s β - magneton Bohr'a 9,27334 x 10^{-21} erg/gauss

$$g^{2} = g_{1}^{2} k_{1}^{2} + g_{2}^{2} k_{2}^{2} + g_{3}^{2} k_{3}^{2}$$

$$D = D_{1}(3k_{1}^{2}-1) + D_{2}(3k_{2}^{2}-1) + D_{3}(3k_{3}^{2}-1)$$

$$/3/$$

Podstawiając wartości tensorów obliczonych z równań /3/ do wyrażenia /2/ oraz wyrażając D i v w GHz otrzymamy:

$$H_{rez} = \frac{v \pm D/2}{B/h g}$$
 (4)

gdzie H_{rez} - wartość pola magnetycznego w kOe, przy którym obserwujemy dane przejście rezonansowe.

Problem rachunkowy sprowadza się do obliczenia cosinusów kierunkowych k_1 , k_2 , k_3 w funkcji kąta między przyłożonym polem magnetycznym a osiami

kompleksów danego centrum.

Jak wspomnieliśmy uprzednio, wybrano trzy charakterystyczne kierunki: $[001] - C_4$, $[111] - C_3$, $[110] - C_2$, leżące w płaszczyźnie /170/. Dla powyższych kierunków widmo EPR upraszcza się ze względu na nakładanie się linii tego samego centrum pochodzących od różnych kompleksów.

3.1. Defekty Si-P1, Si-P3

Kolejność indeksów w składowych tensorów g oraz D przyjęto według isenoff'a [1]; oznaczenia podano na rys. 1.

Rys. 1. Położenie składowych tensorów g oraz D w stosunku do osi krystalograficznych A_g , A_D - kąty skręcenia tensorów

Inni autorzy przyjmują oznaczenia jak podaje tab. 1.

		Tabela 1
[1]	[2]	[3]
2	3	1
1	2	2
3	1	3

Centra P4 oraz P3 zawierają po 12 kompleksów. Na każdą płaszczyznę typu /110/ wypada po dwa kompleksy. Oznaczenia kompleksów podaje tab. 2. Transformując za pomocą macierzy obrotów poszczególne kompleksy do

płaszczyzny pomiarowej /1 $\overline{10}$ / otrzymamy wyrażenia na cosinusy kierunkowe k₁, k₂, k₃ zebrane w tab. 3.

	1.	2	3		1		2	3
A	110	11h	·hh2	G	110	-	1 1h	hh2
В	101	1h1	h2h	H	101		īhī	h2h
С	011	hh1	2hh	I	011		h11	2hh
D	110	11h	hh2	J	110		11h	hh2
E	101	1h1	h2h	K	101		1h1	h2h
F	011	h11	2hh	L	011		h11	2hh

http://rcin.org.pl

Tabela .2

Tabela 3

k _{1A}	$k_{1AD} = \Theta + k_{1GJ} = \sin \Theta + k_{1BCHL} = \frac{1}{2}\sin \Theta - \frac{1}{2}\cos \Theta + k_{1EFKI} = \frac{1}{2}\sin \Theta + \frac{1}{2}\cos \Theta$					
. k ₂		k ₃				
A	sin/0+A/	cos/0+A/				
D	sin/0-A/	cos/0-A/				
GJ	sinAcos0	cosAcos@				
BC	/1/2sinA+1/2cosA/sin0+1/2cosAcos0	/1cosA-1sinA/sin0-1sinAcos0				
EF	/1/2sinA+1/2cosA/sin0-1/2cosAcos0	$\frac{1}{2}\cos A - \frac{1}{2}\sin A / \sin \Theta + \frac{1}{2}\sin A \cos \Theta$				
HL	/1/2sinA-1/cosA/sin0-1/cosAcos0	$\frac{1}{2}\cos A + \frac{1}{2}\sin A / \sin \theta + \frac{1}{2}\sin A \cos \theta$				
KI	$\frac{1}{2}\sin A - \frac{1}{2}\cos A / \sin \theta + \frac{1}{2}\cos A \cos \theta$	/1/2cosA+2sinA/sin0-2sinAcos0				

A - kąt skręcenia kompleksu

• - kąt, jaki tworzy pole H od kierunku [001] w płaszczyźnie (170).

Defekt Si-P1

Oznaczony według Nisenoff'a [1], jako centrum N, ma w temperaturze pokojowej silne linie struktury subtelnej. Y.H. Lee i J.W. Corbett [5] przyjęli model fizyczny centrum jako "five-vacancy cluster V_5 ". W naszych rozważaniach nad widmem przyjęto stałe hamiltonianu według W. Jung'a [2]; w odniesieniu do temperatury 300 K wynoszą one: S = 1/2 g₁ = 2,01256 g₂ = 2,00445 g₃ = 2,00901 A_g = 17,5°. Zależności kątowe H_{rez} = f/Ø/ w oparciu o cosinusy kierunkowe zebrane w tab. 3 ilustruje rys. 7. Natomiast na rys. 2 pokazano położenie linii rezonansowych dla trzech wyróżnionych kierunków.

Defekt Si-P3

Oznaczony według [1] jako centrum. Y. H. Lee i J. W. Corbet [7] przyjęli model fizyczny centrum jako:

"/110/-planar tetravacancy chain V_4 "

Do obliczeń położenia linii widma P3 przyjęto stałe hamiltonianu dla 300 K wg [3] ; wynoszą one:

S = 1 $g_1 = 2,0099$ $g_2 = 2,0009$ $g_3 = 2,0102$ $A_g = 34,4^\circ$

 $D_1 = 0,0222$ $D_2 = -0,0456$ $D_3 = 0,0234$ $A_D = -6,3^\circ$

Składowe tensora D wyrażono w GHz. Zależnośći kątowe pokazuje rys. 8, natomiast schematyczne położenie linii uwidoczniono na rys. 3.

Rys. 3. Schematyczne położenie linii defektu Si-P3

11

3.2. Defekt Si-P6

Oznaczony według [1] jako centrum W. Corbett w [4] przyjął model fizyczny centrum jako "[100]-split di-interstitial". Przyjęte według [4] stałe wynoszą: $g_1 = 2,0015 g_2 = 2,00378 g_3 = 2,00572 A = 2^{\circ}$ Wyrażenia na cosinusy kierunkowe, przyjmując oznaczenia kompleksów jak w [4], zebrano w tabeli 4. Schematyczne położenie linii przy założeniu

 $A_{\sigma} = 0$ pokazuje rys. 4.

Tabela 4

×1	k2	k ₃
xy, xy 1/2sin0/cosA+sinA/	cosO	1sin0/cosA-sinA/ V2
yx, $\overline{y}x \frac{1}{\sqrt{2}} \sin \theta / \cos A - \sin A / \frac{1}{\sqrt{2}}$	co 50	1sin@/cosA+sinA/ VZ
xz, xz 1cosAsin0-sinAcos0 √2	<u>1</u> sin0 V2	lsinAsin0+cosAcos0 √2
yz, $\overline{y}z$ $\frac{1}{\sqrt{2}}$ cosAsin0+sinAcos0	$\frac{1}{\sqrt{2}}$ in 0	1_sinAsinQ-cosAcosÓ √2
zy, $\overline{z}y \frac{1}{\sqrt{2}} \sin A \sin \theta - \cos A \cos \theta$	$\frac{1}{\sqrt{2}}$ sin0	lcosAsin0+sinAcos0 √2
zx, $\overline{z}x \frac{1}{\sqrt{2}} \sin A \cos \theta + \cos A \cos \theta$	<u>1</u> sin0 V2	1cosAsin0-sinAcos0 V2

A - kąt skręcenia kompleksu

θ - kąt, jaki tworzy pole magnetyczne H od kierunku [001] w płaszczyźnie (110).

Rys. 4. Schematyczne położenie linii defektu Si-P6 C₄ 1-2,00150, 2-2,00378, 3-2,00572 C₃ 4-2,00337

C2 5-2,00361, 6-2,00475

http://rcin.org.pl

Defekt Si-A5

W pracy W. Corbett'a [6] przyjęto model fizyczny centrum opisany jako: "two [100]-split interstitials centered at two-lattice spacings along the [100]"

Stałe hamiltonianu wzięte z tej pracy wynoszą:

 $g_{II} = 2,0064$ $D_{II} = 0,0567$ $g_{II}, D_{II} || [100]$ $g_{II} = 2,0066$ $D_{II} = -0,0282$

Wyrażenia na cosinusy kierunkowe są te same co dla P6 z tym, że A = O. Na rys. 5 pokazano schematycznie położenia linii dla v=9,357 GHz.

Defekt Si-A3

W pracy [4] zaobserwowano defekt mający cztery kompleksy z osiami.typu [111] S = 1/2; dla 300K stałe wynoszą: g_{II} = 2,0029 g_I = 2,0104 Zależności kątowe dla cosinusów kierunkowych podaje tab. 5.

	T	a	b	e	18	a	5
-	-	-	-	-	-	-	-

	· k ² ₁₁	k ²
A	$\frac{1}{3}(\sqrt{2} \sin\theta + \cos\theta)^2$	$\frac{1}{3}(\sqrt{2}\cos\theta - \sin\theta)^2$
В	$\frac{1}{3}(\sqrt{2} \sin \theta - \cos \theta)^2$	$\frac{1}{3}(\sqrt{2}\cos\theta + \sin\theta)^2$
CD	$\frac{1}{3}\cos^2\theta$	$\sin^2 \theta + \frac{2}{3} \cos^2 \theta$

13

Schematyczne położenie linii pokazano na rys. 6.

4. OMOWIENIE WYNIKOW ORAZ WNIOSKI Z PRZEPROWADZONYCH POMIAROW

Otrzymane widma EPR badanych próbek były bardzo złożone i trudne do interpretacji. Podstawowa trudność wynikała z jednoczesnego występowania widm pochodzących od różnych kompleksów oraz różnych centrów defektowych.

Natężenia linii były różne dla poszczególnych centrów w zależności od badanego kryształu. Ze względu na dużą liczbę linii /np. dla dowolnej orientacji w płaszczyźnie /110/ tylko dla defektów P1 i P3 występuje 21 linii nie uwzględniając linii struktury nadsubtelnej na obszarze 40 0e/ środkowa część widma jest ich superpozycją i nawet niewielka zmiana orientacji, rzędu 1⁰, w wielu przypadkach zmieniała w sposób dość wyraźny kształt widma.

W tej sytuacji identyfikacja linii pochodzących od tego samego defektu następowała poprzez celowe zmniejszenie lub całkowite wyeliminowanie pozostałych centrów. Osiągano to wygrzewając badane próbki. Wygrzewając próbkę w 300°C otrzymano widmo zawierające głównie linie pochodzące od defektu P1.

Innym sposobem było badanie widma w niskich temperaturach. Wykorzystano tutaj fakt różnych czasów relaksacji dla poszczególnych centrów paramagnetycznych. Dawało to wprawdzie eliminację niektórych centrów przy utrzymaniu stałej mocy mikrofalowej, niemniej jednak w wielu przypadkach widmo zmieniało radykalnie swój charakter. Zmiana ta wynikała głównie z trzech przyczyn: Wraz ze zmianą temperatury zmieniały się wartości tensorów g oraz D z równoczesną zmianą ich kąta skręcenia względem osi krystalograficznych /przykładowo przy 320 K dla P1 A=18° /g₁=2,005 natomiast

14

http://rcin.org.pl

w pobliżu temperatury ciekłego azotu A=35°, g₁=2,0022/. Druga przyczyna wynikała ze zniekształcenia poszczególnych linii spowodowanego wpływem czasów relaksacji. Efekt ten pojawiał się w obszarze poniżej temperatury ciekłego azotu. Trzecią przyczyną było ujawnienie się nowych defektów wzbogacających badane widmo w nowe dodatkowe linie, co prawie radykalmie zmieniało charakter widma w obszarze 20 K.

Rys. 7. Zależności H_{rez}=f/0/ w płaszczyźnie /110/ defektu Si-P1. Cyfry obok linii pokazują ich względną intensywność

Rys. 8. Zależności H_{rez}=f/0/ w płaszczyżnie /110/ defektu Si-P3

W planowanych pomiarach na przyszłość przewiduje się badanie próbek w niskich temperaturach małą mocą rzędu nW, za pomocą przystawki superheterodynowej podłączonej do posiadanego spektrometru. Pomiar taki umożliwi identyfikację nowych linii odpowiedzialnych za centra defektowe, związane być może z kompleksami tlenowymi oraz innymi nie zamierzonymi domieszkami.

Na podstawie niniejszej pracy można stwierdzić, iż dominującymi defektami w badanych próbkach były centra defektowe P3 /V_h - tetravacancy/ oraz P1 $/v_5^-$ - five vacancy/. W odróżnieniu od danych literaturowych cytowanych w niniejszej pracy, w badanych próbkach przed wygrzewaniem występowały jednocześnie centra P1 i P3. W pracy [6, 2] centrum P1 pojawiało się dopiero po wygrzaniu w pobliżu 200°C.

Hys. 9. Widma EPR transmutowanego krzemu pasmo X a/ przed wygrzewaniem, b/ po wygrzewaniu w temperaturze 300⁰C dla trzech osi krystalograficznych C₂, C₃, C₄. Strzałkami zaznaczono linie zidentyfikowanych centrów

W trakcie wzrostu temperatury wygrzewania P3 malały aż do zupełnego zniknięcia w okolicy 200°C. W dalszym obszarze wzrastało centrum P1, osiągając maksimum w pobliżu 300°C. Dalsze wygrzewanie do 500°C powodowało zniknięcie wszystkich centrów obserwowanych w temperaturze pokojowej.

Szczegółowe badania zależności temperaturowych powstawania i zanikania defektów wynikłych w transmutowenym krzemie będzie przedmiotem następnej pracy.

/Tekst dostarczono 11.01.1984 r./

- 1. Nisenoff M.: Fan H. Y. Phys. Rev. 128, 4, 1605 /1962/
- 2. Jung W., Newel G. S.: Phys. Rev. 132, 2, 648 /1963/

5. Watkins G. D.: Proc. 7 Int. Conf. Phys. Semi. Radiat. Paris /1964/

- 4. Lee Y. H., Kim Y. M., Corbett J. W.: Radiation effects 15, 77 /1972/
- 5. Lee Y. H., Corbett J. W.: Phys. Rev. B, 8, 6, 2810 /1973/

```
6. Lee Y. H., Gerasimenko N. N., Corbett J. W.: Phys. Rev. B, 14, 10, 4506 /1976/
```

```
7. Lee Y. H., Corbett J. W.: Phys. Rev. B9, 4351 /1974/
```

16

http://rcin.org.pl