Elżbieta NOSSARZEWSKA-ORŁOWSKA, Dariusz LIPIŃSKI, Jerzy SKWARCZ, Jerzy SARNECKI.

INSTYTUT TECHNOLOGII MATERIAŁÓW ELEKTRONICZNYCH ul. Wólczyńska 133, 01-919 Warszawa

# Krzemowe warstwy epitaksjalne domieszkowane As dla mikrofalowych tranzystorów typu npn

# 1. WSTEP

Dążeniem konstruktorów mikrofalowych tranzystorów bipolarnych, do wytwarzania których stosuje się obecnie prawie wyłącznie warstwy epitaksjalne, jest zwiększenie iloczynu mocy admisyjnej i częstotliwości granicznej. Dla osięgnięcia jak najwyższych częstotliwości granicznych konieczna jest minimalizacja oporności szeregowej i pojemności wnoszonych przez strukturę tranzystora i jego obudowę. Oznacza to tendencję do zmniejszenia wymiarów liniowych struktur tranzystorowych i głębokości złącz.

Podstawową możliwością obniżenia oporności szeregowej jest zastosowanie technologii epiplanarnej z wykorzystaniem płytek podłożowych silnie domieszkowanych arsenem do koncentracji 2x10<sup>19</sup> cm<sup>-3</sup>. Standardowo w technologii epiplanarnej elementów dyskretnych wysokiej częstotliwości są używane krzemowe płytki podłożowe domieszkowane antymonem do poziomu 5x10<sup>18</sup> cm<sup>-3</sup>. Zastosowanie płytek podłożowych domieszkowanych As zmniejsza nie tylko rezystancję w objętości podłoża, lecz przede wszystkim rezystancję kontaktu metal-półprzewodnik.

Małe wielkości struktur tranzystorowych stawiają wysokie wymagania co do jednorodności materiału wyjściowego /mikro- i makroniejednorodności rozkładu domieszki/, stanu naprężeń wewnętrznych na granicy podłoże-warstwa oraz płaskorównoległości i wygięcia płytek.

Naprężenia w obszarze przejściowym podłoże monokrystaliczne-warstwa epitaksjalna są wywołane głównie różnicą promieni kowalentnych atomów domieszki podłoża i warstwy epitaksjalnej. Naprężenia te można w istotny sposób zmniejszyć przez zastosowania arsenu jako domieszki w podłożu i warstwie w przypadku struktur n<sup>+</sup>/n. Promień kowalentny atomu As (1.18 Å) jest najbardziej zbliżony do promienia kowalentnego atomu Si (1,17 Å).

Stosowanie jako podłoża krzemu monokrystalicznego silnie domieszkowanego As wymaga ograniczenia efektu samodomieszkowania.

### 2. EPITAKSJA WARSTW KRZEMOWYCH DOMIESZKOWANYCH ARSENEM

Procesy epitaksji warstw krzemu z arsenem jako domieszką są dosyć dokładnie omówione w pracach [1,2,3]. Bardziej szczegółowe badania przeprowadził Rai-Choudhury wraz ze współpracownikami w układzie H<sub>2</sub>-AsH<sub>3</sub>-SiCl<sub>4</sub> [3] oraz Reif dla układu H<sub>2</sub>-AsH<sub>3</sub>-SiH<sub>4</sub> [4].

Analogicznie jak dla innych domieszek grupy V (P i Sb) proces domieszkowania arsenem polega na kontrolowanym dostarczaniu do gazu nośnego H<sub>2</sub>, w trakcie wzrostu epitaksjalnej warstwy krzemu, odpowieddniego wodorku danej domieszki, w tym przypadku AsH<sub>2</sub>.

Arsenowodór podobnie jak PH<sub>3</sub> i SbH<sub>3</sub> jest związkiem niestabilnym w zakresie temperatur epitaksji 1200÷1600 K i ulega w fazie gazowej rozkładowi zgodnie z reakcją:

$$AsH_3(g) \longrightarrow \frac{1}{x} As_x(g) + 1,5 H_2(g)$$
 /1/

Wbudowywanie się arsenu do rosnącej warstwy krzemu opisuje reakcja:

$$\frac{1}{x} \operatorname{As}_{x}(g) \longrightarrow \operatorname{As}(\operatorname{Si})$$
 /2/

Na koncentrację arsenu w warstwie mają wpływ następujące czynniki: ciśnienie cząstkowe arsenowodoru w fazie gazowej, temperatura epitaksjii, szybkość wzrostu warstw oraz szybkość przepływu gazu nośnego. Wpływ dwóch pierwszych czynników jest dominujący.

Zależność koncentracji As w epitaksjalnej warstwie krzemu w zakresie koncentracji wymaganej dla mikrofalowych tranzystorów npn /1.5+7,2×10<sup>15</sup>/cm<sup>-3</sup> w funkcji zmian ciśnienia częstkowego AsH<sub>3</sub> przedstawia rys. 1.

Przebieg zależności koncentracji domieszki w warstwie od ciśnienia cząstkowego AsH<sub>3</sub> jest prostoliniowy do wartości ciśnienia cząstkowego 10<sup>-6</sup> atm<sup>×/</sup>, w kierunku większych ciśnień zmniejsza się kąt nachylenia prostej opisującej tę zależność.



Rys. 1. Koncentracja domieszki w epitaksjalnej warstwie Si w funkcji ciśnienia cząstkowego AsH<sub>z</sub>

x/ 1 atm = 1,01325.10<sup>5</sup> Pa /przeliczenie dotyczy całego artykułu/ http://rcin.org.pl Z obniżeniem temperatury procesu epitaksji rośnie koncentracja arsenu wbudowywanego do warstwy krzemowej, w tym samym kierunku działa obniżenie szybkości wzrostu warstwy przy zachowaniu stałej temperatury wzrostu.

### 2.1. Zjawisko samodomieszkowania

Zjawisko samodomieszkowania, które polega na przenoszeniu domieszki z podłoża i jej wbudowywaniu do warstwy epitaksjalnej, wpływa w sposób decydujący na profil koncentracji na granicy podłoże-warstwa i ogranicza w dużym stopniu możliwość uzyskiwania skokowego złącza.

Próby osadzania warstw epitaksjalnych domieszkowanych As na podłożu domieszkowanym As w standardowym, jednoetapowym procesie wzrostu, w warunkach stosowanych dla płytek podłożowych domieszkowanych Sb i cienkich warstw domieszkowanych P w obniżonej do 1373 K temperaturze, pozwoliły na ocenę efektu samodomieszkowania. Płytki zostały umieszczone na grzejniku w konfiguracji przedstawionej na rys. 2. Schemat przebiegu procesu epitaksji ilustruje rys. 3.





zmierzone metodą C-V



Rys. 3. Schemat jednoetapowego procesu epitaksji a - przepływ wodoru głównego, b - temperatura grzejnika, c - przepływ HCl podczas trawienia płytek podłożowych, d przepływ SiCl, podczas wzrostu warstwy t<sub>1</sub> - włączenie układu grzania, t<sub>2</sub>-t<sub>2</sub> - trawienie płytek podłożowych, t<sub>3</sub>-t<sub>4</sub> - wzrost epitaksjalny

Płytka podłożowa domieszkowana Sb /nr 1/ stanowi płytkę odniesienia. W wyniku otrzymano warstwy na kolejnych płytkach podłożowych domieszkowanych As, w których profil koncentracji domieszki wyraźnie rozmywa się wzdłuż grzejnika, jednocześnie wzrastą poziom koncentracji domieszki - rys. 2. Efekt "rozmycia" jest wynikiem uwalniania się domieszki As z płytek podłożowych. Domieszka wbudowana do warstwy na płytce nr 5 jest sumą domieszek - domieszki uwolnionej z kolejnych płytek oraz domieszki dostarczonej przez układ domieszkujący urządzenia do epitaksji.

Rozmyty profil koncentracji nośników w obszarze przejściowym znacznie pogarsza parametry elektryczne tranzystorów mikrofalowych, stąd też dążenie do uzyskania możliwie dużego gradientu zmian koncentracji nośników w tym obszarze.

W zakładzie Epitaksji ITME zastosowano, celem ograniczenia zjawiska samodomieszkowania, wieloetapowy wzrost warstwy epitaksjalnej. Dokładny opis metody wieloetapowego prowadzenia procesu epitaksji znajduje się w patencie P.244741 [5] i został przedstawiony w artykule [6].

#### 2.2. Charakterystyka procesu epitaksji

Procesy epitaksji były przeprowadzone w urządzeniu Epilogic 15-2 firmy ASM z reaktorem poziomym, w którym grzejnik grafitowy jest nagrzewany halogenowymi lampami podczerwieni [7].

W celu zmniejszenia efektu samodomieszkowania zmodyfikowano typowy proces epitaksji poprzez wprowadzenie dodatkowego etapu. W etapie pierwszym osadzano cienką warstwę o grubości ok. 0,4 µm, z szybkością wzrostu 0,1 µm/min, czyli prawie dziesięciokrotnie mniejszą niż w procesie standardowym, przy zachowaniu równocześnie takiego samego ciśnienia cząstkowego AsH<sub>3</sub> dostarczanego do reaktora, jak podczas wzrostu warstwy w etapie drugim. Zmniejszenie szybkości wzrostu ułatwia wbudowywanie się atomów As znajdujących się w laminarnej warstwie gazu nad powierzchnią płytki w wyniku trawienia podłoża w HCl i wygrzewania w wysokiej temperaturze. Bardzo powolny wzrost pozwala skutecznie związać tę domieszkę w cienkim obszarze warstwy epitaksjalnej i zapobiec dalszemu samodomieszkowaniu [5,6].

Dwuetapowy proces epitaksji przebiegał wg schematu przedstawionego na rys. 4. Otrzymane profile koncentracji domieszki wybranych płytek przedstawiono na rys. 5.

Jak wynika z otrzymanych wyników wprowadzenie dwuetapowego procesu epitaksji pozwoliło na osiągnięcie znacznie lepszego rozkładu koncentracji nośników w obszarze przejściowym warstwa ępitaksjalna--podłoże.

Przedstawiony sposób wytwarzania warstw epitaksjalnych domieszkowanych As umożliwia otrzymanie gradientu zmian koncentracji nośników



Rys. 4. Schemat dwuetapowego procesu epitaksji a - przepływ wodoru głównego, b - temperatura grzejnika, c - przepływ HCl podczas trawienia płytek podłożowych, d - przepływ SiCl<sub>4</sub> podczas dwuetapowego wzrostu warstwy, t<sub>4</sub> - skokowa zmiana przepływu SiCl<sub>4</sub> e - przepływ AsH<sub>3</sub> podczas wzrostu warstwy t<sub>1</sub> - włączenie układu grzania, t<sub>2</sub>-t<sub>2</sub> - trawienie płytek podłożowych, t<sub>3</sub>-t<sub>4</sub> - etap I wzrostu warstwy, t<sub>4</sub>-t<sub>5</sub> etap II wzrostu warstwy



Rys, 5. Profile koncentracji nośników w warstwach otrzymanych w dwuetapowym procesie epitaksji płytka 1 - początek grzejnika, płytka 2 - koniec grzejnika

w obszarze przejściowym, porównywalnego do gradientu koncentracji w warstwach domieszkowanych fosforem na podłożu domieszkowanym antymonem.

Grzejnik grafitowy przed procesem epitaksji jest pokrywany warstwą niedomieszkowanego krzemu o grubości około 5 um. Podczas trawienia płytek podłożowych w HCl, bezpośrednio przed wzrostem epitaksjalnym, następuje przeniesienie krzemu z grzejnika na tylną stronę płytek podłożowych. Warstwa ta maskuje tylną stronę płytki i zapobiega odparowaniu As podczas epitaksji.

Kolejne operacje technologiczne procesu epitaksji, tj. trawienie płytek podłożowych gazowym HCl, płukanie reaktora po trawieniu płytek, etap I i II wzrostu epitaksjalnego były przeprowadzone w temperaturze 1438 K. Prędkości wzrostu wynosiły odpowiednio dla etapu I 0,1 µm/min i etapu II 0,9 µm/min.

#### 3. PARAMETRY PLYTEK Z WARSTWA EPITAKSJALNA

Jako podłoża dla krzemowych warstw epitaksjalnych domieszkowanych As, przeznaczonych na tranzystory mikrofalowe typu npn, stosuje się płytki z monokrystalicznego krzemu typu n<sup>+</sup>, domieszkowanego As, o rezystywności 0,001+0,005 $\Omega$ ·cm.

Opracowano metody otrzymywania dwóch różnych rodzajów warstw o parametrach podanych w tabeli 1 dla tranzystorów niskoszumnych i mocy.

Tabela 1. Parametry warstw epitaksjalnych dla tranzystorów mikrofalowych

| Тур І                                                                                                         | Typ II                                                                                           |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| d = (2,2+2,8)  µm<br>$g = (0,7+0,9) \Omega \cdot \text{cm}$<br>$N = (7,2+5,4) \times 10^{15} \text{ cm}^{-3}$ | $d = (5+6) \ \mu m$<br>$g = (2+3) \ \Omega \cdot cm$<br>$N = (2,3+1,5) \times 10^{15} \ cm^{-3}$ |
| d – grubość warstwy, g – oporność                                                                             | warst, N – koncentracja domieszki                                                                |

#### 3.1. Geometria płytek

Procesy fotolitografii ze względu na małe wielkości struktur tranzystorów mikrofalowych narzucają wysokie wymagania w stosunku do geometrii płytek z warstwą. Błąd płaskorównoległości i wygięcie nie powinny przekraczać 5 µm, dlatego też płytki podłożowe wymagają selekcji przed procesem epitaksji.

Przy grzaniu promieniowaniem podczerwonym płytki podłożowe sę równomiernie nagrzewane – nie ma różnicy temperatur między dolną i górną powierzchnią płytki, dzięki czemu unika się naprężeń prowadzących do wygięcia płytek.

Pomiary błędów płaskorównoległości i wygięcia na płytkach z warstwami epitaksjalnymi wykazały, że błąd płaskorównoległości zwiększa się, natomiast wygięcie zmniejsza się lub pozostaje bez zmian. Ponieważ osadzane warstwy mają grubość około 5 µm /typ II/, a rozrzut grubości na płytce wynosi ±0,5 µm, pogorszenie płaskorównoległości wynika głównie z nierównomiernego przechodzenia krzemu z grzejnika na tylną stronę płytki podłożowej.

Potwierdzeniem tego przypuszczenia był proces epitaksji na grzejniku nie pokrytym warstwą krzemu /nie zamaskowana tylko strona płytek/. Osadzenie warstwy epitaksjalnej w takich warunkach zapewnia zachowanie płaskorównoległości, natomiast pogarsza profil koncentracji. Tylna strona płytki podczas epitaksji zachowuje się w tym przypadku jak stałe źródło atomów As, co znajduje odbicie we wzroście koncentracji nośników dla kolejnych warstw wzdłuż grzejnika oraz w rozmyciu profilu koncentracji /rys. 6/.

W trakcie dalszych prób ustalono, że minimalna grubość warstwy krzemu na grzejniku wynosi 2+2,5 µm. Dla tej grubości warstwy maskującej nie następuje jeszcze pogorszenie płaskorównoległości, a zmiana koncentracji domieszki wzdłuż grzejnika mieści się w wymaganych dla obu typów warstw zakresach. Pokrycie grzejnika warstwę krzemu o grubości 2,5 µm dawało w efekcie rozrzut koncentracji domieszki dla skrajnych płytek /początek i koniec grzejnika ±10%/ i pozwoliło utrzymać błąd płaskorównoległości w dopuszczalnym zakresie.





Rys. 6. Profil koncentracji nośników w obszarze przejściowym warswa-podłoże a – maskowana tylna strona płytki, b – nie maskowana tylna strona płytki /warstwa częściowo strawiona do pomiaru metodą C-V/

Rys. 7. Rozrzut koncentracji nośników w warstwach otrzymanych w dwuetapowym procesie wzrostu na grzejniku pokrytym 2,5 µm warstwę krzemu

Rozrzuty koncentracji nośników wzdłuż grzejnika i otrzymane profile koncentracji dla procesów epitaksji prowadzonych dla 2,5 µm warstwy krzemu pokrywającej grzejnik przedstawiono na rys. 7.

# 3.2. Ocena położenia międzypowierzchni warstwa epitaksjalna-podłoże

Położenie międzypowierzchni określa się jako miejsce w obszarze przejściowym podłoże-warstwa epitaksjalna, w którym pole elektryczne osiąga maksymalną wartość. Koncentrację nośników swobodnych na międzypowierzchni oblicza się ze wzoru [8]:

$$n_{mo} = N_{DI} exp \qquad \left( \begin{array}{c} \ln \frac{N_{DI}}{N_{DII}} \\ \hline \frac{N_{DI}}{N_{DII}} - 1 \end{array} \right) \qquad /3/$$

gdzie: N<sub>DI</sub>, N<sub>DII</sub> – koncentracje nośników swobodnych domieszek odpowiednio w obszarze silniej i słabiej domieszkowanym

Punkt na doświadczalnym profilu koncentracji nośników, otrzymany np. metodą C-V, odpowiadający obliczonej ze wzoru /3/ wartości n<sub>mo</sub>, określa położenie międzypowierzchni, a więc i jej odległości od powierzchni warstwy epitaksjalnej.

Wartość koncentracji na międzypowierzchni nie jest zależna od szerokości obszaru przejściowego, czyli nie zależy od gradientu koncentracji w tym obszarze.

30

Przy obliczaniu położenia międzypowierzchni przyjęto, że wartość koncentracji N<sub>DI</sub> /obszar silnie domieszkowany/ jest równa koncentracji nośników swobodnych w płytce podłożowej. Obliczenia przeprowadzono dla płytek podłożowych o koncentracji nośników 1,08x10<sup>19</sup> cm<sup>-3</sup> i taką też wartość przyjęto dla N<sub>DI</sub>. Wartości N<sub>DII</sub> /obszar słabiej domieszkowany – warstwa epitaksjalna/ dla przedstawionych w tabeli 1 dwóch typów warstw mieszczą się w zakresie:

a/ I typ warstw epitaksjalnych

 $N_{\text{DII}} = N_{\text{epi}} = /5,45 \times 10^{15} - 7,16 \times 10^{15} / \text{ cm}^{-3}$ 

b/ II typ warstw epitaksjalnych

$$N_{\text{DTT}} = N_{\text{epi}} = /1,53 \times 10^{15} - 2,34 \times 10^{15} / \text{ cm}^{-3}$$

Obliczona wartość koncentracji nośników swobodnych na międzypowierzchni dla przyjętych koncentracji N<sub>DI</sub> i N<sub>DII</sub> była jednakowa dla obu typów warstw epitaksjalnych i wynosiła 4,0x10<sup>18</sup> cm<sup>-3</sup>.

# 3.3. Profil koncentracji nośników

Dla oceny złącz l-h przyjęto w Zakładzie Epitaksji ITME metodę określania wielkości rozmycia profilu koncentracji na podstawie zmierzonych metodą C-V profili koncentracji. Pomiary koncentracji nośników w warstwie wykonano metodą C-V za pomocą testera TMP-80, przy użyciu sondy rtęciowej typu Hg 1C firmy MSI [9].

Jako miarę wielkości rozmycia profilu koncentracji domieszki w obszarze złącza n<sup>+</sup>/n przyjęto współczynnik R wyrażony przez stosunek pola pod krzywą koncentracji domieszki N(x) do pola określonego przez stały poziom domieszki w warstwie. Sposób obliczania współczynnika R wg wzoru /4/ ilustruje rys. 8.

$$R = \frac{1}{N_{a}(x_{b} - x_{a})} \int_{x_{a}}^{b} N(x) dx$$

Dla złącza skokowego R = 1, natomiast dla R > 1 występuje w obszarze przejściowym podwyższenie koncentracji nośników powyżej stałego poziomu koncentracji w warstwie /rys. 9/.

Wartość całki ze wzoru /4/ jest obliczena na podstawie wykresu N(x) metodą sumowania pól pod odcinkami prostymi aproksymującymi funkcję N(x).

Napisany początkowo w języku kalkulatora Texas Instruments SR 60A program obliczający wartość współczynnika R został obecnie przystosowany dla mikrokomputera Amstrad 464.

Współczynnik R umożliwił ilościowe porównanie rozkładu domieszki /stopnia rozmycia/ w obszarze przejścia podłoże-warstwa. Wartości R dla poszczególnych płytek otrzymanych w dwuetapowym procesie epitaksji, na grzejniku pokrytym 2,5 µm warstwą krzemu, zamieszczono w tabeli 2. Profile koncentracji tych warstw przedstawia rys. 7.

http://rcin.org.pl

31

141



Rys. 8. Wyznaczanie współczynnika R N<sub>B</sub> – stała koncentracja w warstwie, N<sub>b</sub> = 10×N<sub>B</sub>



Rys. 9. Profile koncentracji w zależności od R

Tabela 2. R w zależności od położenia płytki na grzejniku

| Nr płytki | R              | Położenie          |
|-----------|----------------|--------------------|
| 1<br>6    | 1,072          | początek grzejnika |
| 4<br>10   | 1,223<br>1,218 | koniec grzejnika   |

4. PODSUMOWANIE

Opracowano metodę dwuetapowego wzrostu warstw domieszkowanych As na silnie domieszkowanych As podłożach krzemowych. Taki sposób prowadzenia procesu epitaksji ograniczał w dużym stopniu wpływ zjawiska samodomieszkowania.

Otrzymano epitaksjalne warstwy Si domieszkowane As o parametrach właściwych dla mikrofalowych tranzystorów niskoszumnych i mocy.

Praca w formie komunikatu przedstawiona na VII Krajowej Konferencji Mikrofalowej MIKON 86 w Zakopanem 21-24.04.1986 r.

LITERATURA

- 1. Swanson T.B., Tucker R.S., J. Electrochem. Soc., 116, /1969/, 1271.
- Ishii T., Takahashi K., Kondo A,, Shinahuta K., J. Electrochem. Soc., 122, /1975/, 1523.
- 3. Rai-Choudhury P., Salkowitz E.J., J. Cryst. Growth, 7, /1970/, 353.
- 4. Reif R., Kamnis T.I., Saraswat K.C., J. Electrochem. Soc., 125, /1978/, 1860.
- 5. Nossarzewska-Orłowska E., Szymkiewicz A., Tomaszewski J., Lipiński D.,

Sarnecki J., Patent P.244741.

- Nossarzewska-Orżowska E., Tomaszewski J., Brzozowski A., Sarnecki J., Materiały Elektroniczne, 2, /1985/, 31.
- Nossarzewska-Orłowska E., Skwarcz J., Szymkiewicz A., Materiały Elektroniczne, 2, /1985/, 36.
- 8. Kuźnicki Z.T., Patent P.122087.
- 9. Brzozowski A., Szymkiewicz A., Materiały Elektroniczne 4, /1983/, 36.