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ON SPECIES-AREA RELATIONSHIPS I: 
FIT OF POWER FUNCTION AND EXPONENTIAL MODEL 

ABSTRACT: A FORTRAN program is deve­
loped that generates model assemblages on the ba­
sis of three basic features of animal communities: 
the species weight relationship, the density- weight 
relationship, and the minimal density. Samplings 
from random placed individuals of such assembla­
ges revealed the influence of the sampling method 
(sequential adding, nested and non-nested), the sca­
le, and the underlying relative abundance distribu­
tion on resulting species- area relationships 
(SPARs) . It is concluded that the type of the spe­
cies- area relationship is not an intrinsic factor of an 
assemblage but depends especially on the sampling 
method and the unit of area. The fraction of species 
found only once in the sample (singletons) was the 
major factor influencing the model that fitted the 
SPAR best (at low fractions the exponential, at hig­
her fractions the power function model). All samp­
ling and structural factors that influence the fraction 
of singletons also influence the fit of the SPAR mo­
del. A mathematical derivation showed that at a cer­
tain fraction of singletons in the sample a shift from 
the power function to the exponential model is ex­
pected independent of assemblage type. This shift 
will occur between 20 and 30% singletons. 

KEY WORDS: species area relationship, mo­
del species assemblages, diversity, evenness, relati­
ve abundance distributions, random sampling 

1. INTRODUCTION 

The notion that species number and area 
are related is one of the oldest concepts in 
ecology and probably was first described by 
von Humboldt and Bonpland (1807). 

The question which type offunctions best de­
scribes the relationship between number of 
species and area (SPAR) in animals and 
plants and how to interpret the resulting pa­
rameters have long been discussed by ecolo­
gists. In principal, every constantly rising or 
asymptotic function may serve to describe 
this relationship and it is often more a matter 
of convenience or mathematical simplicity 
(for instance in interpreting the resulting pa­
rameters) to choose one or another model. In­
deed various models have been proposed 
(Arrhenius 1921, Gleason 1922, Kylin 
1926, Archibald 1949, de Caprariis 
et al. 1976, Coleman 1981, Coleman et 
al. 1982, Williams 1995, Harte and Kin­
zig 1997, Leitner and Rosenzweig 1997, 
Ney-Nifle and Mangel 1999, Ulrich 
1999a, b). 

Gleason (1922) postulated an expo­
nential function: 

S = s + b ln(area) (1) 

and Fisher et al. (1943) and Williams 
(1943) showed that such a SPAR results di­
rectly from a log series relative abundance 
distribution. 

On the other hand, Arrhenius (1921) 
and following him Preston (1962), Kil­
burn (1966), May ( 1975) and recently 
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Wissel and Maier (1992), Hanski and 
Gyllenberg (1997) and Harte et al. 
( 1999) favored a power function of the type 

S = s areci (2) 

which is often given in the double log fortn 
(to include zero counts and to norn1alize the 
distribution ofS) 

ln(S) = ln(s) + z ln(area) (3) 

and gave theoretical justifications. 

These two models are by far the most of­
ten used in ecology (because ofmathematical 
simplicity and ease of interpretation) and 
therefore the following study will deal only 
with them. Other models will be dealt with in 
a forthcoming paper. 

In a lot of cases both models, the expo­
nential and the power function, fit nearly 
equally well (Connor and McCoy 1979). 
One reason for this is that double log trans­
forrned data are more easy to fit than untrans­
fottned or semitransformed ones resulting in 
the fact that 75 out of 100 SPARs studied by 
Con nor and McCoy (1979) were fitted by 
a double log transfottned power function 
model but only 38 by the exponential model. 
The power function is now the most widely 
used model to describe SPARs. 

Numerous attempts have been made to 
derive the type of model either from a given 
community structure (Fisher et al. 1943, 
Preston 1962, McArthur and Wilson 
1967, May 1975, Sugihara 1980) or from 
habitat properties (Wissel and Maier 
1992,He andLegendre 1996,Harte eta/. 
1999). However, all of this derivations are 
based on certain assumptions and a general 
solution seems hardly to be derivable. As 
Connor and McCoy (1979) rightly pointed 
out, species-area relationships are a feature 
of their own right and need to be determined 
empirically. Additionally, it turned out that 
the choice ofmodel and the parameter values 
not only depend on the intrinsic structure ofa 
given assemblage but also on the type ofsam­
pling and the scale. Recently, especially the 

latter dependence deserved much attention 
(Fahrig 1992, Palmer and White 1994, 
He and Legendre 1996, Wilson et al. 
1998, Jonsson and Moen 1998, Rosenzw­
eig 1999). He and Legendre (1996) 
showed that both models can be derived by 
truncating the high power tertns of a general 
Taylor series and argued that the exponential 
model will fit best in small sample areas 
whereas the power function will be more ap­
propriate at interrnediate scales. Such a pat­
tern had earlier been proposed by W illiams 
(1943) and Kilburn (1963). Palmer and 
White (1994) found that especially the grain 
(sampling unit) has a profound influence on 
the shape of SPARs but that distance of sam­
ples, and sample number also shape the re­
sulting curves. 

It has long been noticed that the method 
of sampling may influence the actual fotnl of 
the species-area relationship (and therefore 
the choice of the model to describe it) (Pie­
lou 1977, Palmer and White 1994, 
Ney-Nifle andMangel1999) although a 
detailed study of this influence is still miss­
ing. In this paper the three most often applied 
methods to construct SPARs will be com­
pared: 1. sequentially adding independent 
quadrates, 2. sequentially enlarging the area 
sampled resulting in a nested design, and 3. 
sampling independent areas of different size 
(non-nested design). It is often assumed that 
nested sampling results in lower slopes than 
non-nested samplings due to spatial autocor­
relation of nearby quadrates (Palmer and 
White 1994, Leitner and Rosenzweig 
1997,Jonsson andMoen 1998)causedby 
habitat variabilicy (W i 11 i am son 1988). 
Palmer and White (1994) also found a 
strong scale dependence ofthe SPARs in case 
one. Increasing grain resulted in more log­
linear curves (a swift towards the exponential 
model) indicating a gradual change in slope. 

The purpose of this article and the fol­
lowing parts II and Ill (Ulrich 2000a, b) is 
to study the fit and the parameter values ofthe 
power function and the exponential model in 
detail. In doing so it analyses random sam-
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plings out ofmodel areas in which species of 
a variety of model assemblages were placed 
at random. The paper focuses then on three 
main questions: Which model describes the 
resulting SPARs best under various sampling 
conditions? Can the forn1 of a SPAR be de­
rived from underlying community structur­
ing parameters (area heterogeneity and 
density fluctuations? How are type of SPAR 
and diversity, evenness and community 
structure related? 

2. MATERIAL AND METHODS 

Generally, model species assemblages 
are generated using underlying relative abun­
dance relationships (often log-normal or 
log-series models) (May 1975, Leitner and 
Rosenzweig 1997, Wilson et al. 1998). 
However, to get a wide range of 'realistic' 
model assemblages another approach was 
undertaken: real species assemblages are 
characterized by three basic features. They 
have a certain species-weight distribution 
(SWD) [nearly always notrnal or log-nottnal 
(Novotny and Kindlmann 1996)] and a 
density-weight distribution (DWD) with an 
upper boundary line (most often described by 
a power function) which has frequently- but 
not always- a triangular forn1 (Currie and 
Fritz 1993, Currie 1993, Ulrich 1999c) 
(Fig. 1). Thirdly, species do not have infi­
nitely low densities, there is a lower density 
limit below which a species goes locally ex­
tinct. 

Therefore, the model assemblages used 
in this study were generated using the 
FORTRAN program Community Model (Ul­
r i c h 1999b) first by assigning a specific 
SWD (16 weight classes, mean= 8, variance 
= 2), a lower and upper density limit per unit 
ofarea (a cell) (0.000 1 and 0.00002 individu­
als per unit area) and an upper density bound­
ary ofthe DWD (slope of-0.25 to -3) (fable 1). 
Species of assemblages with these features 
were then allowed to fluctuate inside the 
above density boundaries. In real species 
very high and very low densities are less of-

A 

100000 
10000 

·-..- .,.•••• 
en 
~ 

1000 
c 
Q) 100 • tl'! • __ ......• •... .. 
0 . ... ..,.. . 

10 • • ......~. • # 

1 
- .. . . •'• \ .. 

1 10 100 1000 

Weight 

8 

1 2 3 4 5 6 7 8 9 10 

Logarithmic weight class 

Fig. 1. A) Density-weight distribution of a model 
assemblage with 100 species, a normal species 
weight distribution with 10 weight classes, a mean of 
5 and a variance of 3 after log-random density 
fluctuation of each species and a slope of the upper 
density boundary of -1.5 (marked by the line). The 
DWD has also a the triangular form which is often 
found in real assemblages. B) Species - weight 
distribution of the same assemblage 

• 

ten found than inte1111ediate ones, or low den­
sities are more probable than high ones 
(Ulrich in prep.). To simulate this pattern the 
density fluctuations were either simulated by 
random fluctuations with log-transformed 
densities (resulting in a higher number of low 
density species) or with a nortnal random 
generator (resulting in a higher number of in­
tetrnediate densities). Such a generation pro­
cedure resulted in a wide variety of 
community structures of which Figure 2 
gives four examples. This Fig. also shows 
that the assemblages have typical den­
sity-weight distributions (Curri e 1993). 

The individuals of species of a total of 
768 model assemblages (with 12 to 250 spe-



Table I. Parameter design of Community Model to generate 768 assemblages used in this study. Max. density: upper density boundary of the smallest species; min. density: 
minimum allowed density per cell; type of density fluctuation: densities set randomly between the max. and min. allowed density either using untransformed densities (normal), 
or log-transformed densities (log-normal), or a random mixture of both (mixed). The random assessment of densities was done with a normal random number generator 
producing random numbers with a mean = Flucmean and a variance = Flucvariance, or with linear random numbers (non).DWD: type of density-weight relationship with a slope 
of the upper density boundary= DWDslope; SWD: species-weight relationship with maximum 16 binary size classes, a mean = SWDmy, and a variance= SWDvar; The degree 
of aggregation of the species (Aggr) was set to 0 (resulting in a value of Lloyd's index around 1) The degrees of habitat heterogeneity ranged from 0 (no heterogeneity) to 20 
(high heterogeneity). The heterogeneity was either fixed for all species (Hetfix =yes) or different for each species (Hetfix =no) 

No. No. No. cells Method of No. traps Unit of No species Max. Min. Type of Flue 
Assem- sampled sampling area density density density FlucMean Variance 
blages fluctuation 

1 120 300 seq. adding 24 1 14 to 222 10 0.0001 mixed 0.5 0.4 
2 120 300 nested 24 and 70 1 13 to 220 10 0.0001 mixed 0.5 0.4 
3 120 300 non-nested 24 1 15 to 214 10 0.0001 mixed 0.5 0.4 
4 120 300 seq. adding 24 1 15 to 229 10 0.00002 log-normal 0.3 0.4 
5 120 300 seq. adding 24 1 20 to 250 10 0.0001 normal 0.5 0.4 
6 36 300 seq. adding 24 1 13 to 203 100 0.0001 log-normal non non ~ 
7 36 300 nested 24 1 13 to 190 100 0.0001 log-normal non non a 

(1) 

""18 36 300 non-nested 24 1 12 to 193 100 0.0001 log-normal non non 
(1) 

9 30 300 seq. adding 10, 20, I · 4· 89 to 100 10 0.0002 mixed 0.5 0.4 -c 
"'1' ' -·(')30,.. . 1 00 9; .. .1 00 ::r 

10 30 300 nested 10, 20, 1. 4· 89 to 98 10 0.0002 mixed 0.5 0.4' ' 
30,... 1 00 9; .. .100 

No. DWD SWD Classes SWDmy SWDvar DWDslope Aggr Het Hetfix 
1 power normal 16 8 2 0 no 
2 power normal 16 8 2 -0.25; -0.5; 0 no 
3 power normal 16 8 2 -0.75; -1; 0 no 
4 power normal 16 8 2 -1.5 0 0; 5; 10; no 
5 power normal 16 8 2 0 20 no 
6 power normal 16 8 2 -0.5; -1; 0 yes 
7 power normal 16 8 2 -1.5; -2; 0 yes 
8 power normal 16 8 2 -2.5; -3 0 yes 
9 power normal 16 8 2 -0.25; -1 ; 0 0 no 
10 power normal 16 8 2 -1.5 0 0 no 
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Fig. 2. A. 4 different species-abundance distributions generated with Community Model . a) random density 
fluctuations, upper boundary slope of DWD = -0.25); b) random density fluctuations, upper boundary slope of 
DWD = -1.5; c) mix of random and log-random density fluctuation, DWD-slope = -0.25; d) log-random 
density fluctuation, upper boundary slope of DWD = 1.25. 
B. SD of log2 (densities) of all assemblages of Table 1 in relation to the number of species 

cies) were then placed at random into the 

cells of a grid of 300 x 300 cells. In 708 cases 
habitat heterogeneity was simulated giving the 
cells an unequal chance to be occupied by in­
dividuals [either the same heterogeneity pat­
tern for all species (108 assemblages) or a 
different pattern for each species ( 660 assem­
blages)]. As a probability distribution function 
to generate the heterogeneity factors the for­
mula 

N, i = het [sin(a/ rndl) + 
+ cos(a1 rnd2)] + a1 het (4) 

was used where Nrli describes the number of 
individuals of species i to be placed into a 
cell, het is the factor of habitat heterogenei­
ty, a1 is a species specific heterogeneity fac­
tor (from 0 to 1) and rndl, 2 random 
numbers (from 1 to 300) which refer to the 
cell. Factors of heterogeneity of 0, 10, and 
20 then resulted in individuals per cell from 
0 to 90 for each placement procedure. The 
program however does not assume an upper 
limit of the number of species per cells 
(which would introduce a concept of com­
petition into the model). 

From these 300 x 300 cell grids samples 
were taken ( 1) either by sequentially adding 
independent cells ( 10 to 100 samples), (2) by 

p 

a nested design (sequentially adding larger 
areas: 3 to 100 samples of 1, 4, 9, 16, ... 4900 
cells), and (3) by sampling of independent ar­
eas of different largeness (24 samples of 1, 4, 
9, 16, ... 576 cells). Because in case 1 the sam­
pling order has great influence on the resulting 
functions when computing SPARs sampling 
order was first reshuffled 20 times and the re­
sulting mean values were used (following the 
procedure of Colwell and Coddington 
1994). Table 1 gives all of the parameter val­
ues of the program, the number of assem­
blages generated, the resulting species 
numbers and the samples taken. Sampling unit 
(the grain) was either a cell or 4, 9, 16, ... 100) 
cells. 

For each of the 768 assemblages the fol­
lowing parameters were computed: number 
of species in the assemblage Sa, species den­
sity Sumt (number of species per unit area), 
relative species density re/. Sumt ( Sum/ Sa), 
number of species sampled Ss and fraction of 
total species number sampled (Sj!Sa), number 
of species found in only one sample (single­
tons), relative number of singletons (single­
tons/Ss), and Shannon-diversity and evenness 
(whole assemblage and sample separately). 
As an descriptor of the relative abundance 
distributions of the assemblages and the sam-
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ples the standard deviation oflog2 (densities) 
(SD) - also terrned Gaussian weight - was 
used (Sugihara 1980, Tokeshi 1993). 

There is a long discussion which type of 
regression should be used to fit a model 
(Ricker 1973, Seim and Saether 1983, 
LaBarbera 1985). In this study model fits 
were done with type I least square regres­
sions, mainly because nearly all studies on 
species- area relationships used this tech­
nique and because in the model grid used 
there was no error in the 'measurement' of 
area. It should however again be mentioned 
that this type ofregression consistently yields 
higher slope values than other regression 
methods (LaBarbera 1985) 

3. RESULTS 

In a first step the sampling efficacy of the 
nested and the non-nested design was deter­
mined. With both methods a total of4900 cells 
were sampled (5.44% of total area) (assem­
blages 2 and 3 of Table 1). Table 2 shows that 
there are no differences in total sampling effi­
cacy. As expected, the degree ofhabitat hetero­
geneity influenced the proportion of species 
sampled. At a high degree of heterogeneity 
with both methods about 20% less species were 
sampled than in a homogeneous area. 

Nearly all of the SPARs were fitted well 
by both models {Table 3) . By optical inspec­
tion of the resulting curves however it be-
came apparent that R

? 
-- values below 0.9 can 

hardly be accepted as good fits, therefore in 

most of the cases the exponential model seems 
to be preferable. This is especially the case un­
der nested and non-nested sampling where 
much larger areas were sampled (5.44% of to­
tal area). But it is not only the total area with is 
decisive (see below) but also the distribution 
ofsampled areas. In nested design A {Table 3) 
and non-nested design the same total area was 
sampled but the SPARs of the nested design 
were much better fitted by the exponential 
model. Nested design Band non-nested design 
(where cells of same area, but with different 
total area were sampled) however do no differ. 
Under a sequential adding design with a low 
total area sampled (0.03%) both models fitted 
equally good. 

To deterrnine which factors influence the 
model fit, it's dependence of the following 
variables (simple and combined) was stud­
ied: Sa, species density (Sun11), relative species 
density (Sunii!Sa), number of species found 
(Ss), SuniiiSs, numbers of singletons, fraction 
of species found {S/ Sa), standard deviation, 
diversity, and evenness of assemblage, slope 
of DWD, and heterogeneity. Table 4 shows 
that these variables are not independent but 
can be included into 4 main factors: a first 
factor which combines variables more or less 
associated with the sampling procedure and 
the habitat heterogeneity; a second factor in­
cluding structural parameters of the assem­
blages; a third factor which loads high with 
Sa; and a fourth factors loading high only 
which the DWD-slope. Together these fac­
tors explain 87% of total variance. 

Table 2. Differences in sampling efficiency between a nested (type 2) and a non-nested sampling 
design. Results from 240 model assemblages placed in a 300 x 300 cell grid. In the non-nested design 
24 samples were taken with areas of I, 4, 9, 16,...576 cells (total area of 4900 cells), in the nested 
design 24 samples with 1, 9 , 36,.. . 4900 cells. Low heterogeneity: heterogeneity-factor: 5; Medium 
heterogeneity: heterogeneity-factor: 10, High heterogeneity: heterogeneity-factor: 20. 

Sampling method Total Without area 
heterogeneity 

Low 
heterogeneity 

Medium 
heterogeneity 

High 
heterogeneity 

Percent species found 

Nested design 
Non-nested design 

82.1 % 

81.5 % 

93.7% 

93.9% 

84.1 % 

82.9% 

77.1 o/o 

76.6o/o 

73.3 o/o 

72.7% 
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Table 3. Fits of the power function and the logarithmic model of the species-area relationship. 
Number of best fits, mean variance explanation (R2) and their standard deviation derived from 636 
model assemblages described in the text. In the non-nested design (ass. No. 3) 24 samples were taken 
with areas of 1, 4, 9, 16, ... 576 cells (total area of 4900 cells), in the nested design (ass. No. 2) 24 
samples with 1, 9, 36, ... 4900 cells (nested design A) or 24 samples with 1, 4. 9. 16, ..576 cells (nested 
design B), in the sequential adding design 24 samples of 1 cell. Sequential adding: assemblages No. 1 
and 4 to 6. 

Method Power function Logarithmic function 
No. No. Mean StDev. No. Mean StDev. 

R2 R2Assemblages best fits ofR2 best fits ofR2 

Sequential adding 396 179 0.955 0.062 217 0.958 0.055 
Nested design A 120 18 0.872 0.067 102 0.951 0.09 
Nested design B 120 33 0.893 0.069 87 0.946 0.068 
Non-nested design 120 30 0.869 0.07 90 0.918 0.08 

Table. 4. Principal component analysis (Equimax normalized rotation) to extract factors influencing 
the fit of the exponential or the power function model of SPAR. Variables with high loading(> 0.75) 
are marked in bold type. The analysis was done with all assemblages of Table 1. 

Variable Factor 1 Factor 2 Factor 3 Factor 4 
Species density - 0.63 0.43 - 0.46 0.08 
Total number of species in the 0.11 0.15 -0.95 0.00 
assemblage 
Fraction of species found only once 0.76 -0.18 -0.17 -0.31 
Relative species density -0.80 0.47 0.07 0.09 
Species density/species found -0.92 -0.05 0.08 0.17 
Fraction of species found - 0.51 0.80 0.11 0.14 
SD of assemblage 0.00 -0.91 -0.05 0.25 
Diversity of assemblage 0.00 0.80 -0.53 0.12 
Evenness of assemblage - 0.07 0.93 -0.10 0.15 
Slope ofDWD 0.38 -0.12 0.06 -0.86 
Heterogeneity 0.75 0.09 0.10 0.47 
Eigenvalue 4.84 2.52 1.20 1.08 
Proportion of total variance 0.31 0.32 0.13 0.11 

3.1. INFLUENCE OF SAMPLING type of density fluctuation had a major influ­
ence on the relation. With random fluctua­Under all three sampling regimes the 
tions on log transfotmed densities the above proportion of species sampled had a clear ef­
relation is much less pronounced. This latterfect on model fit (Fig. 3). The higher the pro­
type of density fluctuation results in a higherportion of species sampled the better was the 
number of rare species and more log-linearfit of the exponential model. But Figure 3 
relative abundance distributions (Fig. 2). also shows that the correlations are far from 

being perfect. Only 67% (A) to 7o/o (E) of the Indeed, the number of rare species ( esti­
total variance is explained by the proportion mated by the number of singletons in the 
ofspecies sampled. The relationship was bet­ sample) had a major influence on model fit 
ter with sequential adding sample and least (Fig. 4). With sequential adding sampling 
pronounced under a nested sampling design. both variables were highly correlated and the 
And Figures 3A, B, and C indicate that the switch from the exponential to the power 
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Fig. 3. Difference in variance explanation of the exponential and the power function model (R 2 

exponential - power) of SPAR (as a measure of model fit) in relation to 

the proportion of species sampled. A: sequential adding, random density fluctuations, assemblages No. 5 in Table 1; B: sequential adding, mixed random log-random 

fluctuations, ass. No. 1; C: sequential adding, log-random fluctuations, ass. No. 4 ; D: non-nested design, ass. No. 3; E: nested design, ass. No. 2. Positive differences in 

R2 denote a better fit of the exponential model 
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A more than 40% ofthe species were singletons 
120 out of 129 (93%) did so. In the middle N 0.15 

~ 
0.1 • y = -0. 1853x + 0. 0636 range both model fit nearly equally well. Vis­r:: 

R2·-
Cl) 0.05 =0. 7069 ual inspection of the plots showed that good 
(,) 
r:: 0 • fits all have values of variance explanation 
Cl) •... 
Cl) -0.05 above 95%, below 90% the fit can hardly be 

= ·- -0.1 
I 

called well. Plots of R2-values against frac­
c •-0.15 tion of singletons showed that in the middle 

0 0.2 0.4 0.6 0.8 1 range (between 10 and 50% singletons) both 
models have R2-values above 95% (powerFraction of singletons 
function: 82%, exponential model: 89%). 
The perfotrnance of the power functions 

8 dropped steeply below 7.5% singletons with 
N 

~ 
0.3 15 out of21 R2-values below 90%. The expo­

y = -0.451x + 0.1033 
r:: 0.2 nential model generally perfotmed slightly·- R2 =0.2004 
Cl) 0.1 • better: R2-values below 90% occurred only
(,) 
r:: 0 
Cl) below 5% and above 70% singletons.... -0.1 
a 
Cl) 

-0.2 The above relationship appeared to be 
·- •c 

-0.3 independent of sample size. With sample 

0.6 sizes from 10 to 100 (assemblages No. 9 in 0 0.2 0.4 
Table 1) the same correlation came up (data

Fraction of singletons not shown) and the model fit was not corre­
lated with sample size (Fig. 5B). There was, Fig. 4. Difference in variance explanation of the 

ex~o nential and the power .functio~ model however, a dependence on unit of area (Fig. 
(R exponential - R2

power) of SPAR In relation to the SA). The larger the unit the less pronounced 
fraction of singletons (species found only once in the 

was the above correlation. A units above 3 x 3 
sample). A: sequential adding, ass. No. 1, 4 6 ; 

cells the relation vanished because the frac­B: non-nested design, ass. No. 3 
tion of singletons dropped below 20% and 
nearly all of the assemblages were better fit-

function model occun·ed above 1/3 single­ ted by the exponential model (Fig. SA) (the 
tons. If less than 20% singletons occurred relation between unit ofarea and percentage of 
only 1 out of77 assemblages (1.3%) was bet­ singletons followed a logarithmic function: 
ter fitted by the power function model but if %singletons= -D.06 ln(unit) +0.21, r = 0.55, 
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Fi,p. 5. Di:rerence . in va~ance ex~lanation of the exponential and the power function . model (R 2 
exponential -

R-power) of SPAR tn relation to unit of area (A) and number of samples (B). Ass. No. 9 In Table I 
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p(t) < 0.01). In the case ofsample size, on the 
other hand, no such relation could be de­
tected. Both variables appeared to be not cor­
related. 

On what underlying parameters depend 
the fraction of singletons in the sample? A 
multiple correlation revealed a complicated 
pattern, with no single main influencing fac­
tor. Significantly positively correlated with 
the fraction of singletons were the species 

density CP-weight = 0.19), the diversity (f3 = 

0.84), the DWD slope (p = 0.21), and the het­

erogeneity CP = 0.19), negatively correlated 

were the number of species found (p = -0.5), 

the relative species density CP =-0.39), SD (f3 
= - 0.25), and the evenness (p = -0.67) (total 
multiple r of the model: r = 0.76). The low 
variance explanation (58%), however, indi­
cates that it is not possible to derive unambi­
guously the fraction of singletons from the 
underlying assemblage structure. Stochastic 
effects of the sampling procedure result in a 
comparatively high variance in the number of 
singletons. 

Figure 4 also shows that a non-nested 
sampling design (the nested design is not 
plotted due to the low number of singletons: 
in each of the assemblages less than 10%) 
leads to a different result. Although the gen­
eral trend is the same as in the case ofsequen­
tial adding the intercept appears to be lower 
(at 22%) and the variance is much higher. 

The above result can also be obtained 
analytically. The number of species S.'( of the 
x-th sample can be derived from the number 
of species sampled exactly in 1, 2, 3 ... n sam­
ples. 

X (5)s = " f(t)S11 

x ~ nx 
I=} 

where f{i) is the fraction of species found in 
exactly i samples and Sn the total number of 
species found. 

If all of the species found only once this 
for rnula reduces to: 

S.t = x (f(l) S,/n) (6) 

This is the extreme fottil of a power 
function with slope of 1. In the other extreme 
(the more realistic case) the species have the 
same probability to be found in exa<;tly x 
samples. Therefore, for large sample sizes 

Sx =f(X)Sn !! 
n i=l x 

(7)~f(X)S" (ln(x)+C) 

-
n 

with f(x): met 1. number of species (con-

stant), C: Euler constant (~0.5572). In this 
case the species - area relation follows an 
exponential function. 

In general we can divide fottnula 5 into a 
fraction of species containing the singletons 
and a fraction containing the rest (with 
the mean number of species found in exactly 
1, 2, 3 ... n samples: 

S x = j(l)S nX+! /{i)S n (8) 
n 1=2 (n-1)x 

~ /{l)S n X +j{l)Sm! _!_ 

n (n-1) t=2x 

S ';:::, J (1)S n X + J (i)S n (9) 
X 

n (n -l) 

(ln(x)+(C-1)) 

Because j{l) = Sn - (n - 1) f(z) Sn the 
SPAR model (power function or exponential 
depends on the fraction ofsingletons f( 1): at a 
certain fraction f(1) there will be a switch 
from the power to the exponential model. 
Forrnula 9 cannot be solved analytically but it 
is easy to compute both SPARs with various 
fractions of singletons and to deterrnine the 
fraction at which a switch from one type to 
the other occurs. With 10 samples the ap­
proximation of fottnula 9 predicts that the 
switch from the exponential to the power 
function model will occur at 24.8% single­
tons. This is slightly less than derived from 
the model communities. The shape is not a 
straight line but a logarithmic function due to 
the assumption of equal distribution of non­
singletons. With a constant number ofspecies 
sampled the model also depends on the 
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number of samples: the higher this number 
the less will be the point of switch (with 20 
samples the model predicts a switch at 18% 
singletons). 

One factor that influences the percentage 
of singletons is the relative species density 
(re/. Sunu): the higher re/. Sunit the lower the 
percentage of singletons (No. Singletons = 
-0.13 x ln(rel. SuniJ + 0. 03; r = 0.82, p < 
0.0001). However, there is no simple linear 
relationship between relative species density 
and model fit (Fig. 6). The relation is more 
bell shaped, a feature which is especially pro­
nounced under sequential adding sampling. 
In this case, at low relative species densities 
(below 10%), the power function gave the 
best fits. The higher re/. SuniL the better was 
the fit of the exponential model. At re/. Sunit 
above 50% both models fitted nearly equally 
well. Under a nested and a non-nested sam­
pling design this relation still can be detected 
but at low re!. Srel. there is no clear trend to­
wards one of both models. A plot of species 
density/species number sampled (Suni,ISs) re­
sulted in plots which look very similar to the 
ones ofFigure 6 (ofcause due to the high cor­
relation of Ss and Sa: r = 0.78, p (t) < 0.0001; 
data not shown). 

Is it possible to predict the model ofbest 
fit by a combination ofparameter values. For 
this purpose a stepwise multiple regression 
was run with the difference in variance expla­
nation of both SPAR models as dependent 
and the high loading variables ofthe first fac­
tor (Table 4) as independent variables (se­
quential adding sampling only). Table 5 
shows the resulting model with the highest 
total variance explanation. In 85.7% of the 
cases this model predicted the correct 
SPAR-model (power or exponential). 

What are the properties of the 50 assem­
blages of which no SPAR-model could be 
predicted with the regression ofTable 5. Two 
factors could be identified which differ be­
tween the correctly and non-correctly pre­
dicted group: the relative species density and 
the diversity. All 50 assemblages had compa-

rably low relative species densities (mean of 
0.058 but 0.12 in the correctly predicted 
group) and low diversities (1.9 and 2.7, re­
spectively). 

3.2. INFLUENCE OF ASSEMBLAGE 
STRUCTURE 

Figure 7 shows that there is no simple re­
lationship between SPAR model and assem­
blage structure. In the case of a nested and a 
non-nested sampling design model fit and SD 
were positively correlated and at SD values 
above 4 a switch from a power function 
SPAR to the exponential model occurred. 
The same was observed under a sequential 
adding design however with a larger vari­
ance. At low SD values the above correlation 
reversed. SD-values below 2 again favored 
the exponential model. This behavior coin­
cided with the relation between fraction of 
singletons and SD (Fig. 8). This relation was 
strongly bell shaped with low fractions (be­
low 20%) at the high (above 5) and the low 
end (below 2) of the SD-scala. 

The results of a multiple regression 
based on the variables describing the struc­
ture of the assemblages gives Table 6. The 
higher the diversity and the habitat heteroge­
neity, the lower the evenness and the steeper 
the slope of the upper boundary of the DWD, 
the better was the fit of the power function. 
However, although being highly significant 
the variance explanation of the regression 
model was low and the predictive power was 
only 51.4% what means that in nearly half of 
the cases it proved to be impossible to predict 
the SPAR model from underlying assem­
blage parameters. 

This result is strengthened by the fact 
that of the partial correlations of all of the 
above variables and the model fit none of the 
correlations of the structural variables re­
mained significant (Table 7). The fraction of 
singletons dominated, a lesser influence had 
the relative species density (estimated from 
the sample) and the fraction ofspecies found. 
A small influence had also the heterogeneity. 
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Table 5. Predicting the best model of SPAR. Results of a multiple regression based on 355 model 
assemblages (sequential adding, assemblages 1 and 4 to 6) with the difference in variance explanation 
(R2

) as dependent variable. Total R2
: 0.69; multiple r: 0.83; F(3, 351): 254.55, p(F) < 10-6. Only those 

variables are included which were significant at the 1% level. This regression predicted the best fit 
SPAR model (power function or exponential) in 305 assemblages (85.7o/o) correct. 

Factor 

Intercept 
Proportion species sampled 
Species density/No. species sampled 
Proportion species found only in one sample 

B-weight StDev. of B StDev. p(t) 
B-weight ofB 

0.07 0.01 2.334E-23 
0.17 0.04 0.03 0.01 6.6791E- 06 

-0.25 0.04 -0.07 0.01 7.3708E-09 
-0.87 0.05 -0.18 0.01 0 
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Table 6. Predicting the best model of SPAR. Results of a multiple regression based on 355 model 
assemblages (sequential adding, assemblages No. 1 and 4 to 6) with the difference in variance 
explanation (R 2) as dependent variable. Total R2

: 0.34; multiple r: 0.59; F( 4,350): 56.61, p(F) < 10-6. 
Only those variables are included which were significant at the 1o/o level. This regression predicted the 
best fit SPAR model (power function or exponential) in 183 assemblages (51.4%) correct. 

Factor B-weight StDev. of B StDev. of p(t) 
B-weight B 

Intercept 0.015 0.008 7.49E-02 
Diversity of assemblage -0.409 0.086 -0.015 0.003 3.22E-06 
Evenness of assemblage 0.602 0.087 0.126 0.018 2.54E-ll 
Slope ofDWD 0.387 0.043 0.040 0.005 2.09E-17 
Heterogeneity -0.314 0.042 -0.002 0.000 3.96E-13 

R2Table 7. Partial correlations of the variables of Table 4 with the Difference in (power 
or exponential function) to detect the main influencing factor on model fit. Assemblages as in Table 4. 
Given is also the significance level p(t). Significant partial correlations are marked in bold type. 

Variables 
Number of species per cell 
Total number of species in the assemblage 
Fraction of species found only once 
Relative species density 
Species density/species found 
Fraction of species found 
SD of assemblage 
Diversity of assemblage 
Evenness of assemblage 
Slope ofDWD 
Heterogeneity 

4. DISCUSSION 

Ecologists have long thought that the 
species-area relationship is an intrinsic prop­
erty of a certain plant or animal community 
and that the actual form of this relation can be 
derived by analyzing the structure of a com­
munity (or vice versa deriving structural 
properties by studying SPARs) (Fisher et 
al. 1943, Preston 1962, May 1975, 
Schoener 1976, Engen 1977, Martin 
1981, McGuinness 1984, Wright 1988, 
Tokeshi 1993, Harte and Kinzig 1997, 
Le i tner and Ro s enzwei g 1997, Harte et 
al. 1999). The reborn interest in species- area 
relations have shown that the actual parame-

Partial Correlation p (t) 
0.08 0.14 
0.02 0.70 

-0.65 0.00 
-0.08 0.14 
-0.16 0.00 

0.11 0.03 
0.03 0.59 

- 0.08 0.16 
0.07 0.17 
0.10 0.06 

-0.12 0.03 

ters of SPAR-models are scale dependent 
(Palmer and White 1994, Rosenzweig 
1999). The scale dependence of the model it­
self, however, had only scarcely been studied 
(Connor and McCoy 1979, Palmer and 
White 1994, He and Legendre 1996) 
and the power function is generally accepted 
as a fundamental property ofmost communi­
ties (Hanski and Gyllenberg 1997, 
H arte et al. 1999) although the exponential 
model frequently gives better fits - especially 
to plant data (He and Legendre 1996). 

The aim of the present study was to ana­
lyze the influence ofthree basic factors on the 
exponential and the power function model of 
SPAR: the type ofsampling, the scale and the 
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underlying community and habitat structure. 
It was shown that all these factors influence 
the model fit. 

Methods of sampling are difficult to 
compare because changing the method inevi­
tably changes several variables simultane­
ously. Compared with a sequential adding 
technique, a nested sampling design fre­
quently enhances the proportion of species 
sampled (due to the larger area sampled) and 
favors therefore an exponential SPAR model. 
But the comparison between the nested and 
the non-nested design showed that it is not 
only the area that made these difference (Ta­
ble 3). The most pronounced effect of nested 
sampling (and to a lesser degree in the case of 
a non-nested design) is the reduction of the 
number of singletons in the sampling, which 
turned out to be of major importance for 
model fit. Nested and non-nested sampling 
resulted also in a higher variance in plots of 
sampling or structural parameters against 
model fit (Figs 3, 4, 6 and 7). Both sampling 
methods lowered therefore the possibility to 
predict the model ofbest fit. 

The scale of sampling can be subdivided 
into three major variables: the unit of area, 
the number of samples, and the area sampled 
(Addicot et al. 1987). In line with the find­
ings ofPalmer and White (1994) the unit 
of area (the grain) had a profound influence 
on model fit, this again mainly due to the re­
duction of the number of singletons. Dou­
bling the grain resulted in 1.2 to 2 times the 
number of species per unit area and reduced 
the number of singletons by the factor of 1.3 
to 1.8. At units above 0.01% of total area the 
SPARs were nearly always better fitted by 
the exponential model. The number of equal 
sized samples, on the other hand, had only a 
minor influence on the fit. 

Palmer and White (1994) also con­
cluded pronounced influence of the extent, 
the area sampled, on the model fit. The above 
results indicate that this is only the case if 
fairly small fractions ofthe total area are sam­
pled. Extensive sampling enhances the pro-

portion of species sampled and reduces the 
fraction of singletons, which both influences 
the shape of the SPAR. 

He and Legendre (1996) developed 
the power function and the exponential 
model by truncating the terms ofa Taylor se­
ries and argued that the power function will 
fit better at larger areas sampled, the expo­
nential model at smaller areas. My results do 
not confitnl these predictions. Instead, larger 
sampling areas resulted nearly always in a 
better fit of the exponential model due to the 
higher proportion ofspecies sampled (Fig. 3 ). 

H arte et al. (1999) assumed that area 
has a fractal nature. The concept of self­
similarity then results directly in a power 
function SPAR. The above results cast doubts 
on this concept. A random placement of indi­
viduals into a grid with no heterogeneity re­
sults in similar structured cells, but do not 
inevitable result in power function SPARs 
(even when ignoring the effects of the sam­
pling method). Self similarity would also 
have profound influence on the sampling it­
self. It would rule out really independent 
sampling- which is according to Preston 
(1962) necessary for a power function SPAR 
in the case of log-nottnal relative abundance 
distributions - but would result in a forrn of 
pseudoreplication (H u r 1 be r t 1984) similar 
to a sequential adding design. 

The most interesting question is how as­
semblage structure effects the species-area 
relationship. For all who seek a direct rela­
tionship between SPAR and underlying com­
munity structure (especially the fortn of the 
relative abundance distribution) the above re­
sults are disappointing. The low predictive 
power ofthe linear regression model ofTable 
6, the high variance in the relation between 
SD and model fit and the low partial correla­
tions between diversity, evenness, SD and to­
tal species number and model fit show that 
there are no simple relations between these 
variables. Most important is the proportion of 
rare species (species with densities at or be­
low 1 In) in the community and the relation 
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between sample size (n) and fraction of rare 
species in the sample. In the model communi­
ties used here the latter relation was rather 
constant resulting in an independence of 
model fit and sample size but more detailed 
studies in natural communities are necessary 
to decide whether this is a common feature. 

Of course the relative abundance distri­
bution of an assemblage influences the 
number of rare species. The bell shaped rela­
tion between SD-value and model fit indi­
cates however that this relation may be rather 
complicated. Figure 9 gives the SD-values 
for all major theoretical relative abundance 
distributions in relation to the number ofspe­
cies (for detailed descriptions ofthese models 
see Pielou 1977, Frontier 1985, Toke­
shi 1993, 1996). Figure 8 shows the depend­
ence of the SD-value on the fraction of 
singletons in the sample. It appears that at 
very high and at very low SD values the frac­
tion of singletons is low which results in a 
better fit of the exponential model (Figs 4 and 
7) and causes the bell shaped plot in Figure 6. 
Therefore, it is concluded that a dominance 
preemption or a logarithmic model (the 
fo1n1er only being the stochastic equivalent 
ofthe latter) will mostly being fitted better by 
an exponential model (under appropriate 
sample conditions). The same will be the case 
with the relative abundance distributions 
with SD-values below 2 (random assortment, 
broken stick, dominance decay and overlap­
ping niche). In the case of a Zipf-Mandelbrot 
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distribution the SPAR model will depend on 
the parameter values. For the broken stick 
model May (1975) expected a power func­
tion SPAR but the data presented here point 
to an exponential model. Random fraction, 
power fraction distributions and the log­
normal should generally be better fitted by a 
power function SPAR. In the case of the log­
normal this is of course the expected result 
(Preston 1962, May 1975). Log-series 
and geometric model are related and it has 
long been known that a log-series distribu­
tions leads to an exponential model of SPAR. 
The same result can be obtained from Figure 8. 

Sugihara (1980) and following him 
Tokeshi (1996) showed that most larger 
animal assemblages have SD values in the 
range between 2 and 6. This is exactly the 
range in which a better fit of the power func­
tion model is expected and probably the 
cause why this model is by far the most 
widely used. The above results however 
show that such a relation is far from being 
perfect and depends highly on the sampling 
method and the grain. The only really good 
predictor of SPAR model proofed to be the 
fraction of singletons in the sample. While 
this variable depends on sampling method 
and assemblage structure it explains why and 
how both factors influence the fit of a certain 
SPAR model. Each change in sampling 
which enhances the fraction ofsingletons and 
relative abundance distributions which gen-

Fig. 9. SD log2 (densities) of various 
theoretical relative abundance 
distributions in relation to number of 
species. Models: A: dominance 
preemption, B: geometrical (k = 0.75), 
C: log-series (a = I 0), D: random 
fraction, E: power fraction (k = 0.05), F: 
canonical log-normal, G: Zipf­
-Mandelbrot (z = 1.5, X = 0), H: 

2 G, H, I random assortment, I: broken stick, 1: 
J, K dominance decay, K: overlapping niche. 

0 
The plots were computed with the 

0 100 200 300 400 program Niche, with computes and fits 
Species rank order theoretical distributions (Ulrich in prep.) 
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erate high proportions of rare species will fa­
vor power function SPARs. 
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5. SUMMARY 

A FORTRAN program is developed that genera­
tes model assemblages on the basis of three basic fea­
tures of animal communities: the species- weight­
- relationship (SPAR), the density- weight relations­
hip, and the minimal density (Table I, Figs I and 2). 
Samplings from random placed individuals of such as­
semblages revealed the influence of the sampling met­
hod (sequential adding, nested and non-nested), the 
scale, and the underlying relative abundance distribu­
tion (Fig. 8) on resulting species- area relationships 
(Figs 3, 4, 5, 6 and 7, Tables 2, 3, 4, 5, 6 and 7). It is 
concluded that the type species- area relationship is 
not an intrinsic factor of an assemblage but depends 
especially on the sampling method and the unit of 
area. The fraction of species found only once in the 
sample (singletons) was the major factor influencing 
the model that fitted the SPAR best (at low fractions 
the exponential, at higher fractions the power function 
model) (Figs 4 and 9). All sampling and structural fac­
tors that influence the fraction of singletons also influ­
ence the fit of a SPAR model. A mathematical 
derivation showed that at a certain fraction of single­
tons in the sample a shift from the power function to 
the exponential model is expected independent of as­
semblage type. This shift will occur between 20 and 
30°/o singletons. 
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