Object structure

Title:

Sezonowe zróżnicowanie temperatury wody na przykładzie wybranych rzek nizinnych Mazowsza = Seasonal differentiation of water temperature on the example of lowland Mazovian rivers

Subtitle:

Przegląd Geograficzny T. 92 z. 3 (2020)

Creator:

Łaszewski, Maksym ORCID

Role:

Łaszewski, Maksym : Autor

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2020

Description:

24 cm

Subject and Keywords:

water temperature ; seasonal differentiation ; monitoring ; lowland watercourses ; Mazovian Lowland

Abstract:

Thermal regime has a critical impact on the lotic environment, as maximum temperature determines the boundaries of the occurrence of aquatic species, seasonal and diurnal water temperature variations affect their bioenergetics, while the timing of specific water temperature values during the year is important in the context of spawning and migrations. However, despite the great importance of water temperature studies in the context of environmental management and fisheries, as well as the development of accurate measurement techniques, such investigations have received relatively limited attention in Poland. The current study attempted to examine the seasonal differentiation of water temperature in lowland rivers. For this purpose, water temperature was recorded from the 1st of May 2015 to the 30th of April 2019 with a temporal resolution of 30-minutes. Digital temperature reorders used to make the measurements were distributed across six sites in Jeziorka, Świder and Utrata catchments located on the Mazovian Lowland and the Southern Podlachia Lowland near Warsaw. The hydrometeorological background of the water temperature monitoring was determined on the basis of data from the Warszawa-Okęcie station and water gauging stations. On the basis of the measurement data, mean, maximum, and minimum monthly water temperatures were calculated and presented on the background of the appropriate air temperature data, while statistical distribution of the 30-minute water temperature, aggregated in a monthly timescale, was presented on the box and whiskers plots. The Ward method was used to group months similar in terms of their thermal conditions, while the Pearson correlation coefficient was applied to evaluate the strength of the relationship between water and air temperature. The results indicate that the seasonal course of water temperature follows the course of air temperature, with the highest mean monthly water temperatures recorded in July, while the lowest in January. Statistical distribution analysis of water temperature in individual months and its grouping by the Ward method allowed to identify two periods characterized by relatively stable thermal conditions and two periods of dynamic changes of water temperature. In contrast to the maximum values of water temperature, which were observed in the summer as a result of intensive solar radiation and low streamflow rates, the greatest variability of water temperature, as indicated by reference to mean daily range and standard deviation, was found in the spring months, i.e. in April and May, while the lowest in winter, from December to February. The relationship between daily mean water temperature and air temperature, established with the use of the Pearson correlation coefficient on a monthly basis, was clearly stronger during the spring increase and the autumn fall of the water temperature, which can be linked with greater vulnerability to atmospheric heat fluxes. A definitely weaker relationship was found in the winter and summer months, when greater importance can be attached to other drivers of stream temperature, like the presence of ice cover, cloudiness, riparian shading, and groundwater inflows.

References:

Bartnik A., 2017, Mała rzeka w dużym mieście, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
Bartnik A., Moniewski P., Tomalski P., 2013, Seasonality of the basic physical and chemical characteristics of water flowing through the cascades of small reservoirs, Limnological Review, 13, 2, s. 63-71. https://doi.org/10.2478/limre-2013-0007
Benjamin J.R., Heltzel J.M., Dunham J.B., Heck M., Banish N., 2016, Thermal Regimes, Nonnative Trout, and Their Influences on Native Bull Trout in the Upper Klamath River Basin, Oregon, Transactions of the American Fisheries Society, 145, 6, s. 1318-1330. https://doi.org/10.1080/00028487.2016.1219677
Benyahya L., Caissie D., Satish M.G., El-Jabi N., 2012, Long-wave radiation and heat flux estimates within a small tributary in Catamaran Brook (New Brunswick, Canada), Hydrological Processes, 26, 4, s. 475-484. https://doi.org/10.1002/hyp.8141
Beschta R.L., Bilby R.E., Brown G.W., Holtby L.B., Hofstra T.D., 1987, Stream Temperatures and Aquatic Habitat: Fisheries and Forestry Interactions, [w:] E.O. Salo, T.W. Cundy (red.), Streamside Management: Forestry and Fishery Interactions, University of Washington, Washington, s. 191-232.
Broadmeadow S.B., Jones J.G., Langford T.E.L., Shaw P.J., Nisbet T.R., 2011, The influence of riparian shade on lowland stream water temperatures in southern England and their viability for brown trout, River Research and Applications, 27, 2, s. 226-237. https://doi.org/10.1002/rra.1354
Brown L.E., Cooper L., Holden J., Ramchunder J., 2010, A comparison of stream water temperature regimes from open and afforested moorland, Yorkshire Dales, northern England, Hydrological Processes, 24, 22, s. 3206-3218, https://doi.org/10.1002/hyp.7746
Caissie D., 2006, The thermal regime of rivers: a review, Freshwater Biology, 51, 8, s. 1389-1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x
Degirmendžić J., Kożuchowski K., 2017, Makrocyrkulacyjne uwarunkowania długotrwałych fal termicznych w Polsce, Przegląd Geofizyczny, 62, 1-2, s. 3-28.
Dugdale S.J., Malcolm I.A., Kantola K., Hannah D.M., 2018, Stream temperature under contrasting riparian forest cover: Understanding thermal dynamics and heat exchange processes, Science of The Total Environment, 610-611, s. 1375-1389. https://doi.org/10.1016/j.scitotenv.2017.08.198
Dunham J., Chandler G., Rieman B., Martin D., 2005, Measuring Stream Temperature with Digital Data Loggers: A User's Guide, Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-150WWW. https://doi.org/10.2737/RMRS-GTR-150
Dynowska I., 1971, Typy reżimów rzecznych w Polsce, Zeszyty Naukowe UJ, Prace Geograficzne, 28.
Evans E.C., McGregor G.R., Petts G.E., 1998, River energy budgets with special reference to river bed processes, Hydrological Processes, 12, 4, s. 575-595. https://doi.org/10.1002/(SICI) 1099-1085(19980330)12:4<575:: AID-HYP595>3.0.CO; 2-Y
Graf R., 2015, Zmiany termiki wód Warty w profilu łączącym pradolinny i przełomowy odcinek doliny (Nowa Wieś Podgórna-Śrem-Poznań), [w:] D. Absalon, M. Matysik, M. Ruman (red.), Nowoczesne metody i rozwiązania w hydrologii i gospodarce, Komisja Hydrologiczna PTG, Katowice, s. 177-194.
Graf R., Wrzesiński D., 2019, Relationship between Water Temperature of Polish Rivers and LargeScale Atmospheric Circulation, Water, 11, 8, 1690. https://doi.org/10.3390/w11081690
Graf R., Zhu S., Sivakumar B., 2019, Forecasting river water temperature time series using a wavelet-neural network hybrid modelling approach, Journal of Hydrology, 578, 124115. https://doi.org/10.1016/j.jhydrol.2019.124115
Halaś A., Czarnecka K., Piasecki K., Łaszewski M., 2019, Przestrzenne i sezonowe zróżnicowanie wybranych parametrów jakości wody w zlewni zurbanizowanej na przykładzie Potoku Służewieckiego, Przegląd Geograficzny, 91, 1, s. 121-138, https://doi.org/10.7163/PrzG.2019.1.6
Imholt C., Soulsby C., Malcolm I.A., Gibbins C.N., 2013, Influence of contrasting riparian forest cover on stream temperature dynamics in salmonid spawning and nursery streams, Ecohydrology, 6, 3, s. 380-392. https://doi.org/10.1002/eco.1291
Kaandorp V.P., Doornenbal P.J., Kooi H., Broers H.P., de Louw P.G.B., 2019, Temperature buffering by groundwater in ecologically valuable lowland streams under current and future climate conditions, Journal of Hydrology X, 3, 100031. https://doi.org/10.1016/j.hydroa.2019.100031
Kędra M., Wiejaczka Ł., 2018, Climatic and dam-induced impacts on river water temperature: Assessment and management implications, Science of The Total Environment, 626, s. 1474-1483. https://doi.org/10.1016/j.scitotenv.2017.10.044
Łaszewski M., 2018, Diurnal Water Temperature Dynamics in Lowland Rivers: a Case Study from Central Poland, Journal of Water and Land Development, 36, 1, s. 89-97. https://doi.org/10.2478/jwld-2018-0009
Malcolm I., Soulsby C., Hannah D.M., Bacon P.J., Youngson A.F., Tetzlaff D., 2008, The influence of riparian woodland on stream temperatures: implications for the performance of juvenile salmonids, Hydrological Processes, 22, 7, s. 968-979. https://doi.org/10.1002/hyp.6996
Marszelewski W., Pius B., 2015, Long-term changes in temperature of river waters in the transitional zone of the temperate climate: a case study of Polish rivers, Hydrological Sciences Journal, 61, 8, s. 1430-1442, https://doi.org/10.1080/02626667.2015.1040800
Marszelewski W., Strzyżewska-Pietrucień I., 2009, Temperatura wody dolnej Wisły i jej wieloletnie zmiany, [w:] A.T. Jankowski, D. Absalon, R. Machowski, M. Ruman (red.), Przeobrażenia stosunków wodnych w warunkach zmieniającego się środowiska, Wydział Nauk o Ziemi, Uniwersytet Śląski, Sosnowiec, s. 197-210.
Michalska B., 2011, Tendencje zmian temperatury powietrza w Polsce, Prace i Studia Geograficzne, 47, s. 67-75.
Mohseni O., Stefan H.G., 1999, Stream temperature/air temperature relationship: a physical interpretation, Journal of Hydrology, 218, 3-4, s. 128-141. https://doi.org/10.1016/S0022-1694(99)00034-7
O'Driscoll M.A., DeWalle D.R., 2006, Stream-air temperature relations to classify stream-ground water interactions in a karst setting, central Pennsylvania, USA, Journal of Hydrology, 329, 1-2, s. 140-153. https://doi.org/10.1016/j.jhydrol.2006.02.010
Oksiuta M., 2010, Basic parameters of the thermal regime of rivers in the Vistula river catchment, Miscellanea Geographica, 14, 1, s. 185-192. https://doi.org/10.2478/mgrsd-2010-0017
Piętka I., 2009, Wieloletnia zmienność wiosennego odpływu rzek polskich, Prace i Studia Geograficzne, 43, s. 81-95.
Piotrowski A.P., Napiórkowski M.J., Napiórkowski J.J., Osuch M., 2015, Comparing various artificial neural network types for water temperature prediction in rivers, Journal of Hydrology, 529, 1, s. 302-315. https://doi.org/10.1016/j.jhydrol.2015.07.044
Poole G.C., Berman C.H., 2001, An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation, Environmental Management, 27, 6, s. 787-802. https://doi.org/10.1007/s002670010188
Ptak M., Choiński A., Kirviel J., 2016, Long-term water temperature fluctuations in coastal rivers (southern Baltic) in Poland, Bulletin of Geography. Physical Geography Series, 11, s. 35-42. https://doi.org/10.1515/bgeo-2016-0013
Ptak M., 2017, Wpływ zalesienia zlewni na temperaturę wody w rzece, Leśne Prace Badawcze, 78, 3, s. 251-256. https://doi.org/10.1515/frp-2017-0028
Ptak M., Nowak B., 2017, Zmiany temperatury wody w Prośnie w latach 1965-2014, Woda-Środowisko-Obszary Wiejskie, 17, 3, s. 101-112.
Radtke G., Dobosz S., 2015, Charakterystyka termiczna wód Raduni zasilającej ośrodek hodowli ryb łososiowatych w Rutkach, Komunikaty Rybackie, 137, 4, s. 1-5.
Rajwa-Kuligiewicz A., Bialik R.J., Rowiński P.M., 2015, Dissolved oxygen and water temperature dynamics in lowland rivers over various timescales, Journal of Hydrology and Hydromechanics, 63, 4, s. 353-363. https://doi.org/10.1515/johh-2015-0041
Selong J.H., McMahon T.E., Zale A.V., Barrows F.T., 2001, Effect of Temperature on Growth and Survival of Bull Trout, with Application of an Improved Method for Determining Thermal Tolerance in Fishes, Transactions of the American Fisheries Society, 130, s. 1026-1037. https://doi.org/10.1577/1548-8659 (2001)130<1026:EOTOGA>2.0.CO; 2
Sloat M.R., Osterback A.K., 2013, Maximum stream temperature and the occurrence, abundance, and behavior of steelhead trout (Oncorhynchusmykiss) in a southern California stream, Canadian Journal of Fisheries and Aquatic Sciences, 70, s. 64-73. https://doi.org/10.1139/cjfas-2012-0228
Smołkowicz W., Wiejaczka Ł., Soja R., 2014, Ocena zasięgu oddziaływania zbiornika Klimkówka na termikę rzeki Ropy, Monitoring Środowiska Przyrodniczego, 16, s. 59-64.
Somorowska U., Łaszewski M., 2017, Human-Influenced Streamflow during Extreme Drought: Identifying Driving Forces, Modifiers, and Impacts in an Urbanized Catchment in Central Poland, Water and Environment Journal, 31, 3, s. 345-352. https://doi.org/10.1111/wej.12249
Stopa-Boryczka M., Boryczka J., Wawer J., Grabowska K., Dobrowolska M., Osowiec M., Błażek E., Skrzypczuk J., Grzęda M., 2012, Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce. Z badań klimatu Mazowsza (z uwzględnieniem większych miast), Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.
Van Lanen H.A.J., Laaha G., Kingston D.G., Gauster T., Ionita M., Vidal J.P., Vlnas R., Tallaksen L.M., Stahl K., Hannaford J., Delus C., Fendekova M., Mediero L., Prudhomme C., Rets E., Romanowicz R.J., Gailliez S., Wong W.K., Adler M.J., Blauhut V., Caillouet L., Chelcea S., Frolova N., Gudmundsson L., Hanel M., Haslinger K., Kireeva M., Osuch M., Sauquet E., Stagge J.H., Van Loon A.F., 2016, Hydrology needed to manage droughts: the 2015 European case, Hydrological Processes, 30, 17, s. 3097-3104. https://doi.org/10.1002/hyp.10838
Wałkuska G., Wilczek A., 2010, Influence of Discharged Heated Water on Aquatic Ecosystem Fauna, Polish Journal of Environmental Studies, 19, 3, s. 547-552.
Webb B.W., Hannah D.M., Dan Moore R., Brown L.E., Nobilis F., 2008, Recent advances in stream and river temperature research, Hydrological Processes, 22, 7, s. 902-918. https://doi.org/10.1002/hyp.6994
Webb B.W., Zhang Y., 1999, Water temperatures and heat budgets in Dorset chalk water courses, Hydrological Processes, 13, 3, s. 309-321. https://doi.org/10.1002/(SICI) 1099-1085(19990228)13:3<309:: AID-HYP740>3.0.CO; 2-7
Wiejaczka Ł., 2007, Relacje pomiędzy temperaturą wody w rzece a temperaturą powietrza (na przykładzie rzeki Ropy), Folia Geographica. Series Geographica Physica, 37-38, s. 95-105.
Wiejaczka Ł., 2011, Wpływ zbiornika retencyjnego na relacje między temperaturą wody w rzece a temperaturą powietrza, Przegląd Naukowy - Inżynieria i Kształtowanie Środowiska, 53, 3, s. 183-195.
Wrzesiński D., 2017, Typologia reżimu odpływu rzek w Polsce w podejściu nadzorowanym i nienadzorowanym, Badania Fizjograficzne, 8, Seria A - Geografia Fizyczna, 68, s. 253-264.
Żmudzka E., 2007, Zmienność zachmurzenia nad Polską i jej uwarunkowania cyrkulacyjne (1951-2000), Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.

Relation:

Przegląd Geograficzny

Volume:

92

Issue:

3

Start page:

391

End page:

408

Resource type:

Text

Detailed Resource Type:

Article

Format:

application/octet-stream

Resource Identifier:

0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2020.3.5

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

pol

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Operational Program Digital Poland, 2014-2020, Measure 2.3: Digital accessibility and usefulness of public sector information; funds from the European Regional Development Fund and national co-financing from the state budget.

Access:

Open

×

Citation

Citation style: