Object structure
Title:

Thermal regime of the Vistula River mouth and the Gdańsk Bay

Subtitle:

Geographia Polonica Vol. 96 No. 4 (2023)

Creator:

Graf, Renata : Autor Affiliation ORCID ; Vyshnevskyi, Viktor : Autor Affiliation ORCID

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2023

Description:

24 cm

Subject and Keywords:

water temperature ; air temperature ; remote sensing ; coastal zone ; Baltic Sea

Abstract:

Surface water temperature characteristics of the Vistula River mouth and the Gdańsk Bay were determined on the basis of available observations, remote sensing and hydrodynamic models. The water temperature in the Vistula River and the Gdańsk Bay was found to be much higher than the air temperature. In recent decades, the water temperature in the Vistula River mouth and the Gdańsk Bay has increased significantly. It has been determined that water temperature in the bay is affected not only by air temperature, but also by water discharge of the Vistula River and wind.

References:

Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., … & Winder, M. (2009). Lakes as sentinels of climate change. Limnology and oceanography, 54(6), 2283-2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283 DOI
Alcântara, E. H., Stech, J. L., Lorenzzetti, J. A., Bonnet, M. P., Casamitjana, X., Assireu, A. T., & de Moraes Novo, E. M. L. (2010). Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir. Remote Sensing of Environment, 114(11), 2651-2665. https://doi.org/10.1016/j.rse.2010.06.002 DOI
Barsi, J. A., Schott, J. R., Hook, S. J., Raqueno, N. G., Markham, B. L., & Radocinski, R. G. (2014). Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration. Remote Sensing, 6(11), 11607-11626. https://doi.org/10.3390/rs61111607 DOI
Chubarenko, B., & Margoński, P. (2008). The Vistula Lagoon. In Schiewer, U. (Eds.) Ecology of Baltic Coastal Waters. Ecological Studies, Vol. 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73524-3_8 DOI
Copernicus. (2022). The ever growing use of Copernicus across Europe's regions. A selection of 99 user stories by local and regional authorities. https://www.copernicus.eu/sites/default/files/2018-10/copernicus4regions.pdf
Czernecki, B., & Ptak, M. (2018). The impact of global warming on lake surface water temperature in Poland - the application of empirical-statistical downscaling, 1971-2100. Journal of Limnology. 77(2), 340-348. https://doi.org/10.4081/jlimnol.2018.1707 DOI
De Santis, D., Del Frate, F., & Schiavon, G. (2022). Analysis of climate change effects on surface temperature in Central-Italy lakes using satellite data time-series. Remote Sensing, 14(1). https://doi.org/10.3390/rs14010117 DOI
Dyba, K., Ermida, S., Ptak, M., Piekarczyk, J., & Sojka, M. (2022). Evaluation of methods for estimating lake surface water temperature using Landsat 8. Remote Sensing, 14(15): 3839. https://doi.org/10.3390/rs14153839 DOI
Girjatowicz, J. P. (2014). Characteristics and relationships of water temperature along Polish Baltic Sea coast. Inżynieria Morska i Geotechnika, 3, 195-201.
Graf, R., & Wrzesiński, D. (2020). Detecting patterns of changes in river water temperature in Poland. Water. 12(5). https://doi.org/10.3390/w12051327 DOI
IMGW-PIB. (2014). Ocena wpływu obecnych i przyszłych zmian klimatu na strefę polskiego wybrzeża i ekosystem Morza Bałtyckiego. Gdynia: Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy, Oddział Morski w Gdyni.
Kejna, M., & Rudzki, M. (2021). Spatial diversity of air temperature changes in Poland in 1961-2018. Theoretical and Applied Climatology, 143(3-4), 1361-1379. https://doi.org/10.1007/s00704-020-03487-8 DOI
Konik, M., Kowalewski, M., Bradtke, K., & Darecki, M. (2019). The operational method of filling information gaps in satellite imagery using numerical models. International Journal of Applied Earth Observation and Geoinformation, 75, 68-82. https://doi.org/10.1016/j.jag.2018.09.002 DOI
Kowalewska-Kalkowska, H., & Kowalewski, M. (2019). Combining satellite imagery and numerical modeling to study the occurrence of warm upwellings in the Southern Baltic Sea in winter. Remote Sensing, 11(24). https://doi.org/10.3390/rs11242982 DOI
Kubiak-Wójcicka, K. (2018). Flow characteristics of the Vistula river at the Tczew gauging station in 1951-2010 based on Flashiness Index. In 4rd International Conference Water Resources and Wetlands Conference proceedings (pp. 119-129). https://www.limnology.ro/wrw2018/Proceedings/16_Kubiak.pdf
Łajczak, A., Plit, J., Soja, R., Starkel, L., & Warowna, J. (2006). Changes of the Vistula River channel and floodplain in the last 200 Years. Geographia Polonica. 2, 65-87. http://rcin.org.pl/igipz/Content/81/GP_79_2.pdf#page=66
Lieberherr, G., & Wunderle, S. (2018). Lake surface water temperature derived from 35 years of AVHRR sensor data for European lakes. Remote Sensing, 10(7), 990. https://doi.org/10.3390/rs10070990 DOI
Marba, N., & Duarte, M. C. (2010). Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biology, 16(8), 2366-2375. https://doi.org/10.1111/j.1365-2486.2009.02130.x DOI
Marszelewski, W., & Pius, B. (2016). Long-term changes in temperature of river waters in the transitional zone of the temperate climate: A case study of Polish rivers. Hydrological Sciences Journal, 61(8), 1430-1442. https://doi.org/10.1080/02626667.2015.1040800 DOI
Mooij, W. M., De Senerpont Domis, L. N., & Hulsman, S. (2008). The impact of climate warming on water temperature, timing of hatching and young-of-the-year growth of fish in shallow lakes in the Netherlands. Journal of Sea Research, 60(1-2), 32-43. https://doi.org/10.1016/j.seares.2008.03.002 DOI
Pareeth, S., Bresciani, M., Buzzi, F., Leoni, B., Lepori, F., Ludovisi, A., ... & Salmaso, N. (2017). Warming trends of perialpine lakes from homogenised time series of historical satellite and in-situ data. Science of the Total Environment, 578, 417-426. https://doi.org/10.1016/j.scitotenv.2016.10.199 DOI
Ptak, M., Choiński, A., & Kirviel, J. (2016). Long-term water temperature fluctuations in coastal rivers (southern Baltic) in Poland. Bulletin of Geography. Physical Geography Series, No. 11. 35-42. https://doi.org/10.1515/bgeo-2016-0013 DOI
Ptak, M., Sojka, M., & Nowak, B. (2020). Effect of climate warming on a change in thermal and ice conditions in the largest lake in Poland - Lake Śniardwy. Journal of Hydrology and. Hydromechanics, 68(3), 260-270. https://doi.org/10.2478/johh-2020-0024 DOI
Ptak, M., Sojka, M., Graf, R., Choiński, A., Zhu, S., & Nowak, B. (2022). Warming Vistula River - the effects of climate and local conditions on water temperature in one of the largest rivers in Europe. Journal of Hydrology and. Hydromechanics, 70(1), 1-11. https://doi.org/10.2478/johh-2021-0032 DOI
Schaeffer, B. A., Iiames, J., Dwyer, J., Urquhart, E., Salls, W., Rover, J., & Seegers, B. (2018). An initial validation of Landsat 5 and 7 derived surface water temperature for U.S. lakes, reservoirs, and estuaries. International Journal of Remote Sensing, 39(22), 7789-7805. https://doi.org/10.1080/01431161.2018.1471545 DOI
Sharaf, N., Fadel, A., Bresciani, M., Giardino, C., Lemaire, B. J., Slim, K., … & Vinçon-Leite, B. (2019). Lake surface temperature retrieval from Landsat-8 and retrospective analysis in Karaoun Reservoir, Lebanon. Journal of Applied Remote Sensing, 13(4). https://doi.org/10.1117/1.JRS.13.044505 DOI
Sharma, S., Gray, D. K., Read, J. S., O'Reilly, C. M., Schneider, P., Qudrat, A., … & Woo, K. H. (2015). A global database of lake surface temperatures collected by in situ and satellite methods from 1985-2009. Scientific Data, 2(1), 1-19. https://doi.org/10.1038/sdata.2015.8 DOI
Szaniawska, A. (2018). The Gulf of Gdańsk and Vistula Lagoon. In: Baltic Crustaceans. Springer, Cham. https://doi.org/10.1007/978-3-319-56354-1_4 DOI
Virdis, S. G. P., Soodcharoen, N., Lugliè, A., & Padedda, B. M. (2020). Estimation of satellite-derived lake water surface temperatures in the western Mediterranean: Integrating multi-source, multi-resolution imagery and a long-term field dataset using a time series approach. Science of The Total Environment, 707, 135567. https://doi.org/10.1016/j.scitotenv.2019.135567 DOI
Von Storch, H., Omstedt, A., Pawlak, J., & Reckermann, M. (2015). Introduction and Summary. In The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin (pp. 1-22). Springer, Cham, Heidelberg, New York, Dordrecht, London. https://doi.org/10.1007/978-3-319-16006-1_1 DOI
Vyshnevskyi, V., Matygin, A., & Komorin, V. (2023). Thermal regime of the Northwestern part of the Black Sea. Geographia Technica, 18(1), 29-38. https://doi.org/10.21163/GT_2023.181.03 DOI
Vyshnevskyi, V., & Shevchuk, S. (2021). Thermal regime of the Dnipro Reservoirs. Journal of Hydrology and Hydromechanics, 69(3), 300-310. https://doi.org/10.2478/johh-2021-0016 DOI
Vyshnevskyi, V., & Shevchuk, S. (2023). Thermal regime of the Danube Delta and the adjacent lakes. Journal of Hydrology and Hydromechanics, 71(3), 283-292. https://doi.org/10.2478/johh-2023-0015 DOI
Webb, B. W., & Nobilis, F. (2007). Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrological Sciences Journal, 52(1), 74-85. https://doi.org/10.1623/hysj.52.1.74 DOI
Woolway, R. I., Dokulil, M. T., Marszelewski, W., Schmid, M., Bouffard, D., & Merchant, C. J. (2017). Warming of Central European lakes and their response to the 1980s climatic regime shift. Climate change, 142, 505-520. https://doi.org/10.1007/s10584-017-1966-4 DOI
Woźniak, B., Bradtke, K., Darecki, M., Dera, J., Dudzińska-Nowak, J., Dzierzbicka-Głowacka, L., … & Zapadka, T. (2011). SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 1: Assumptions, scope and operating range. Oceanologia, 53(4), 897-924. https://doi.org/10.5697/oc.53-4.897 DOI
Wróblewski, R., Rudowski, S., Gajewski, Ł., Sitkiewicz, P., Szefler, K., Kałas, M., & Koszałka, J. (2015). Changes of the Vistula River External Delta in the period of 2009-2014. Bulletin of the Maritime Institute in Gdańsk. 30(1), 16-22. DOI
Wrzesiński, D., & Graf, R. (2022). Temporal and spatial patterns of the river flow and water temperature relations in Poland. Journal of Hydrology and Hydromechanics, 70(1), 12-29. https://doi.org/10.2478/johh-2021-0033 DOI
Zblewski, S. (2007). O dwudzielności przyczyn zmian temperatury powierzchni Bałtyku (1982-2001). In K. Piotrowicz, R. Twardosz (Eds.), Wahania klimatu w różnych skalach przestrzennych i czasowych (pp. 145-154). Kraków: Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego.
(pp. 145-154). Kraków: Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego.Zhelezova, E., Krek, E., & Chubarenko, B. (2018). Characteristics of the polynya in the Vistula Lagoon ofthe Baltic Sea by remote sensing data. International Journal of Remote Sensing, 39(24), 9453-9462.https://doi.org/10.1080/01431161.2018.1524181 DOI

Relation:

Geographia Polonica

Volume:

96

Issue:

4

Start page:

459

End page:

471

Resource type:

Text

Detailed Resource Type:

Journal

Resource Identifier:

0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0264

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure

Access:

Open

×

Citation

Citation style: