Object structure


Wpływ warunków meteorologicznych na zachorowalność na grypę w wybranych polskich miastach = Impact of meteorological conditions on influenza morbidity in the selected Polish cities


Przegląd Geograficzny T. 93 z. 1 (2021)


Lindner-Cendrowska, Katarzyna : Autor ORCID


Lindner-Cendrowska, Katarzyna : Instytut Geografii i Przestrzennego Zagospodarowania im. S. Leszczyckiego PAN



Place of publishing:


Date issued/created:



24 cm

Subject and Keywords:

influenza ; morbidity ; meteorological conditions ; Polish cities ; negative binomial regression


This study was designed to explore the impact of meteorological factors (air temperature, relative and absolute humidity, wind, cloudiness and precipitation) on influenza morbidity in four selected big cities in Poland – Cracow, Poznań, Warsaw and Wrocław. Atmospheric data obtained from four meteorological stations spread over six years (2013‑2018) were compared to influenza-like illnesses (ILI) reports, obtained from the Voivodship Units of the State Sanitary Inspection for the same locations and period. Data were analysed using Spearman correlation and negative binomial regressions to capture the nonlinear relationship between exposure to environmental conditions and influenza morbidity. Our study found a strong negative association of absolute air humidity with influenza infections (RR = 0.738) and positive relationship with minimal temperature (RR = 1.148). The effect of wind speed, cloudiness and precipitation on ILI was less evident. Proposed model is valid for all age groups in Polish cities, but suits the best to elderly citizens (65+). The model is also appropriate for different seasons, however only absolute humidity, minimal temperature and wind speed are considered significant variables all year round. Furthermore, we observed 6 to 9-days delay between particular adverse weather conditions and ILI morbidity increase, as 1-week lag model proved to have the highest predictive power (AIC = 8644.97). Although meteorological variables have statistically significant contribution to explain influenza morbidity, there are also other non-climatic factors, that can possibly influence the seasonality and complexity of influenza epidemiology in Polish cities.


Akaike, H. (1998). Information Theory and an Extension of the Maximum Likelihood Principle. W:E.Parzen, K. Tanabe, & G. Kitagawa (red.), Selected Papers of Hirotugu Akaike. Springer Series in Statis‑tics (Perspectives in Statistics). New York: Springer. https://doi.org/10.1007/978‑1-4612‑1694‑0_15 DOI
Babcock, H.M., Merz, L.R., & Fraser, V.J. (2006). Is Influenza an Influenza-Like Illness? Clinical Presentation of Influenza in Hospitalized Patients. Infection Control & Hospital Epidemiology, 27(3), 266‑270. https://doi.org/10.1086/501539 DOI
Bednarska, K., Hallmann-Szelińska, E. Kondratiuk, K., Rabczenko, D., & Brydak, L. (2016). Innowacje w nadzorze nad grypą w Polsce. Problemy Higieny i Epidemiologii, 97(2), 101‑105.
Błażejczyk, K., Baranowski, J., & Błażejczyk, A. (2015). Wpływ klimatu na stan zdrowia w Polsce: stan aktualny oraz prognoza do 2100 roku. Warszawa: Wydawnictwo Akademickie SEDNO. http://rcin.org.pl/igipz/Content/60110/WA51_79962_r2015_Wplyw-klimatu-na-sta.pdf
Bouvier, N.M., & Palese, P. (2008). The biology of influenza viruses. Vaccine, 26, D49-D53. https://doi.org/https://doi.org/10.1016/j.vaccine.2008.07.039 DOI
Brankston, G., Gitterman, L., Hirji, Z., Lemieux, C., & Gardam, M. (2007). Transmission of influenza A in human beings. The Lancet. Infectious Diseases, 7(4), 257‑265. https://doi.org/10.1016/S1473‑3099 (07)70029‑4 DOI
Brydak, L.B. (2012). Grypa - problem stary jak świat. Hygeia Public Health, 47(1), 1‑7.
Brydak, L.B. (2014). Grypa znana od stuleci - nadal groźna. Flu known for centuries - still dangerous Szczepionki i szczepienia przeciw grypie. Family Medicine & Primary Care Review, 16(2), 181‑184.
Buckingham-Jeffery, E., Morbey, R., House, T., Elliot, A. J., Harcourt, S., & Smith, G.E. (2017). Correcting for day of the week and public holiday effects: improving a national daily syndromic surveillance service for detecting public health threats. BMC Public Health, 17(1), 477. https://doi.org/10.1186/s12889‑017‑4372-y DOI
Cannell, J.J., Vieth, R., Umhau, J.C., Holick, M.F., Grant, W.B., Madronich, S., Garland, C.F., & Giovannucci, E. (2006). Epidemic influenza and vitamin D. Epidemiology and Infection, 134, 1129‑1140. https://doi.org/10.1017/S0950268806007175 DOI
Chan, P K.S., Mok, H.Y., Lee, T.C., Chu, I.M.T., Lam, W.-Y., & Sung, J.J.Y. (2009). Seasonal influenza activity in Hong Kong and its association with meteorological variations. Journal of Medical Virology, 81(10), 1797‑1806. https://doi.org/10.1002/jmv.21551 DOI
Chen, G., Zhang, W., Li, S., Zhang, Y., Williams, G., Huxley, R., Ren, H., Cao, W., & Guo, Y. (2017). The impact of ambient fine particles on influenza transmission and the modification effects of temperature in China: A multi-city study. Environment International, 98, 82‑88. https://doi.org/10.1016/J.ENVINT.2016.10.004 DOI
Ciencewicki, J., & Jaspers, I. (2007). Air Pollution and Respiratory Viral Infection. Inhalation Toxicology, 19(14), 1135‑1146. https://doi.org/10.1080/08958370701665434 DOI
Cox, N.J., & Subbarao, K. (2000). Global Epidemiology of Influenza: Past and Present. Annual Review of Medicine, 51, 407‐421. https://doi.org/10.1146/annurev.med.51.1.407 DOI
Department of Infectious Disease Epidemiology and Surveillance NIZP-PZH. (2019). Definitions of infectious disease cases for the needs of epidemiological surveillance, 2018.
Dowell, S.F. (2001). Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerging Infectious Diseases, 7, 369‑374. https://doi.org/10.3201/eid0703.017301 DOI
du Prel, J., Puppe, W., Gröndahl, B., Knuf, M., Weigl, J.A.I., Schaaff, F., & Schmitt, H. (2009). Are Meteorological Parameters Associated with Acute Respiratory Tract Infections? Clinical Infectious Diseases, 49(6), 8618‑68. https://doi.org/10.1086/605435 DOI
Eccles, R. (2005). Understanding the symptoms of the common cold and influenza. The Lancet. Infectious Diseases, 5(11), 718‑725. https://doi.org/10.1016/S1473‑3099 (05)70270-X DOI
Fdez-Arroyabe, P. (2012). Influenza epidemics and Spanish climatic domains. Health, 04(10), 941‑945. https://doi.org/10.4236/health.2012.430144 DOI
Feng, C., Li, J., Sun, W., Zhang, Y., & Wang, Q. (2016). Impact of ambient fine particulate matter (PM2.5) exposure on the risk of influenza-like-illness: A time-series analysis in Beijing, China. Environmental Health: A Global Access Science Source, 15(1), 1‑13. https://doi.org/10.1186/s12940‑016‑0115‑2 DOI
Finkelman, B.S., Viboud, C., Koelle, K., Ferrari, M.J., Bharti, N., & Grenfell, B.T. (2007). Global patterns in seasonal activity of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: Viral coexistence and latitudinal gradients. PLoS ONE, 2(12), e1296. https://doi.org/10.1371/journal.pone.0001296 DOI
Fisman, D. (2012). Seasonality of viral infections: Mechanisms and unknowns. Clin DOI
Gomez-Barroso, D., León-Gómez, I., Delgado-Sanz, C., & Larrauri, A. (2017). Climatic factors and influenza transmission, Spain, 2010‑2015. International Journal of Environmental Research and Public Health, 14(12), 1469. https://doi.org/10.3390/ijerph14121469 DOI
Heikkinen, T., & Järvinen, A. (2003). The common cold. The Lancet, 361(9351), 51‑59. https://doi.org/10.1016/S0140‑6736 (03)12162‑9 DOI
Huang, X., Mengersen, K., Milinovich, G., & Hu, W. (2017). Effect of weather variability on seasonal influenza among different age groups in Queensland, Australia: A Bayesian spatiotemporal analysis. Journal of Infectious Diseases, 215(11), 1695‑1701. https://doi.org/10.1093/infdis/jix181 DOI
Huppert, A., Barnea, O., Katriel, G., Yaari, R., Roll, U., & Stone, L. (2012). Modeling and Statistical Analysis of the Spatio-Temporal Patterns of Seasonal Influenza in Israel. PLoS ONE, 7(10), e45107. https://doi.org/10.1371/journal.pone.0045107 DOI
Hwang, J.-S., & Chan, C.-C. (2002). Effects of Air Pollution on Daily Clinic Visits for Lower Respiratory Tract Illness. American Journal of Epidemiology, 155(1), 1‑10. https://doi.org/10.1093/aje/155.1.1 DOI
Iha, Y., Kinjo, T., Parrott, G., Higa, F., Mori, H., & Fujita, J. (2016). Comparative epidemiology of influenza A and B viral infection in a subtropical region: a 7-year surveillance in Okinawa, Japan. BMC Infectious Diseases, 16(1), 650. https://doi.org/10.1186/s12879‑016‑1978‑0 DOI
Iwańczak, B. (2015). Zróżnicowanie przestrzenne zagrożenia grypą w Polsce. Prace i Studia Geograficzne, 57, 127‑144.
Jaakkola, K., Saukkoriipi, A., Jokelainen, J., Juvonen, R., Kauppila, J., Vainio, O., Ziegler, T., Rönkkö, E., Jaakkola, J.J.K., Ikäheimo, T.M., & the KIAS-Study Group (2014). Decline in temperature and humidity increases the occurrence of influenza in cold climate. Environmental Health, 13(1), 22. https://doi.org/10.1186/1476‑069X-13‑22 DOI
Jensen, M.M. (1964). Inactivation of Airborne Viruses by Ultraviolet Irradiation. Applied Microbiology, 12(5), 418‑420. https://doi.org/10.1128/aem.12.5.418‑420.1964 DOI
Johnson, J.B., & Omland, K.S. (2004). Model selection in ecology and evolution. Trends in Ecology and Evolution, 19(2), 101‑108. https://doi.org/10.1016/j.tree.2003.10.013 DOI
Korzeniecki, P. (2015). Warunki pogodowe sprzyjające zwiększonej zachorowalności na grypę w województwie mazowieckim (Weather conditions associated with increased occurrence of influenza in the Mazovia Voivodeship in Poland). W: P. Krąż, J. Liro, & M. Liro (red.), Współczesne problemy i kierunki badawcze w geografii, 3 (s. 109‑122). Kraków: Instytut Geografii i Gospodarki Przestrzennej UJ.
Lessler, J., Reich, N.G., Brookmeyer, R., Perl, T.M., Nelson, K.E., & Cummings, D.A.T. (2009). Incubation periods of acute respiratory viral infections: a systematic review. The Lancet. Infectious Diseases, 9(5), 291‑300. https://doi.org/10.1016/S1473‑3099 (09)70069‑6 DOI
Li, C.C., Wang, L., Eng, H.L., You, H.L., Chang, L.S., Tang, K.S., Lin, Y.J., Kuo, H.C., Lee, I.K., Liu, J.W., Huang, E.Y., & Yang, K.D. (2010). Correlation of pandemic (H1N1) 2009 viral load with diseas severity and prolonged viral shedding in children. Emerging Infectious Diseases, 16, 1266‑1272. https://doi.org/10.3201/eid1608.091918 DOI
Li, Y., Wang, X.L., & Zheng, X. (2018). Impact of weather factors on influenza hospitalization across different age groups in subtropical Hong Kong. International Journal of Biometeorology, 62(9), 1615‑1624. https://doi.org/10.1007/s00484‑018‑1561-z DOI
Liu, X.X., Li, Y., Qin, G., Zhu, Y., Li, X., Zhang, J., Zhao, K., Hu, M., Wang, X.L., & Zheng, X. (2019). Effects of air pollutants on occurrences of influenza-like illness and laboratory-confirmed influenza in Hefei, China. International Journal of Biometeorology, 63(1), 51‑60. https://doi.org/10.1007/s00484‑018‑1633‑0 DOI
Lochmiller, R.L., & Deerenberg, C. (2000). Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos, 88(1), 87‑98. https://doi.org/10.1034/j.1600‑0706.2000.880110.x DOI
Lofgren, E., Fefferman, N.H., Naumov, Y.N., Gorski, J., & Naumova, E.N. (2007). Influenza Seasonality: Underlying Causes and Modeling Theories. Journal of Virology, 81(11), 5429‑5436. https://doi.org/10.1128/jvi.01680‑06 DOI
Lowen, A.C., Mubareka, S., Steel, J., & Palese, P. (2007). Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathogens, 3(10), 1470‑1476. https://doi.org/10.1371/journal.ppat.0030151 DOI
Mäkinen, T.M., Juvonen, R., Jokelainen, J., Harju, T.H., Peitso, A., Bloigu, A., Silvennoinen-Kassinen, S., Leinonen, M., & Hassi, J. (2009). Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections. Respiratory Medicine, 103(3), 456‑462 https://doi.org/10.1016/j.rmed.2008.09.011 DOI
Martineau, A.R., Jolliffe, D.A., Hooper, R.L., Greenberg, L., Aloia, J.F., Bergman, P., Dubnov-Raz, G., Esposito, S., Ganmaa, D., Ginde, A.A., Goodall, E.C., Grant, C.C., Griffiths, C.J., Janssens, W., Laaksi, I., Manaseki-Holland, S., Mauger, D., Murdoch, D.R., Neale, R., & et al. (2017). Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ (Online), 356. https://doi.org/10.1136/bmj.i6583 DOI
McDevitt, J., Rudnick, S., First, M., & Spengler, J. (2010). Role of absolute humidity in the inactivation of influenza viruses on stainless steel surfaces at elevated temperatures. Applied and Environmental Microbiology, 76(12), 3943‑3947. https://doi.org/10.1128/AEM.02674‑09 DOI
Meerhoff, T.J., Paget, W.J., Aguilera, J.F., & van der Velden, J. (2004). Harmonising the virological surveillance of influenza in Europe: results of an 18-country survey. Virus Research, 103(1‑2), 31‑33. https://doi.org/10.1016/j.virusres.2004.02.009 DOI
Moorthy, M., Castronovo, D., Abraham, A., Bhattacharyya, S., Gradus, S., Gorski, J., Naumov, Y.N., Fefferman, N.H., & Naumova, E.N. (2012). Deviations in influenza seasonality: Odd coincidence or obscure consequence? Clinical Microbiology and Infection, 18(10), 955‑962. https://doi.org/10.1111/j.1469‑0691.2012.03959.x DOI
Mourtzoukou, E.G., & Falagas, M.E. (2007). Exposure to cold and respiratory tract infections. International Journal of Tuberculosis and Lung Disease, 11(9), 938‑943.
Narodowy Instytut Zdrowia Publicznego - PZH. (2019). Choroby zakaźne i zatrucia w Polsce. Biuletyn roczny. Pobrane z: http://wwwold.pzh.gov.pl/oldpage/epimeld/index_p.html (30.03.2020).
Nastos, P.T., & Matzarakis, A. (2006). Weather impacts on respiratory infections in Athens, Greece. International Journal of Biometeorology, 50(6), 358‑369. https://doi.org/10.1007/s00484‑006‑0031‑1 DOI
Nelson, M.I., & Holmes, E.C. (2007). The evolution of epidemic influenza. Nature Reviews Genetics, 8(3), 196‑205. https://doi.org/10.1038/nrg2053 DOI
Peci, A., Winter, A L., Li, Y., Gnaneshan, S., Liu, J., Mubareka, S., Gubbay, J.B., Humidity, A., & Humidity, R. (2019). Effects of Absolute Humidity, Relative Humidity, Temperature, and Wind Speed on Influenza Activity in Toronto, Ontario, Canada. Applied and Environmental Microbiology, 85(6), 1‑13. https://doi.org/10.1128/AEM.02426‑18 DOI
Pica, N., & Bouvier, N.M. (2012). Environmental factors affecting the transmission of respiratory viruses. Current Opinion in Virology, 2(1), 90‑95. https://doi.org/10.1016/j.coviro.2011.12.003 DOI
Polozov, I.V., Bezrukov, L., Gawrisch, K., & Zimmerberg, J. (2008). Progressive ordering with decreasing temperature of the phospholipids of influenza virus. Nature Chemical Biology, 4(4), 248‑255. https://doi.org/10.1038/nchembio.77 DOI
Price, R.H.M., Graham, C., & Ramalingam, S. (2019). Association between viral seasonality and meteorological factors. Scientific Reports, 9(1), 1‑11. https://doi.org/10.1038/s41598‑018‑37481-y DOI
Romaszko, J., Skutecki, R., Bocheński, M., Cymes, I., Dragańska, E., Jastrzębski, P., Morocka-Tralle, I., Jalali, R., Jeznach-Steinhagen, A., & Glińska-Lewczuk, K. (2019). Applicability of the universal thermal climate index for predicting the outbreaks of respiratory tract infections: a mathematical modeling approach. International Journal of Biometeorology, 63(9), 1231‑1241. https://doi.org/10.1007/s00484‑019‑01740-y DOI
Roussel, M., Pontier, D., Cohen, J.M., Lina, B., & Fouchet, D. (2016). Quantifying the role of weather on seasonal influenza. BMC Public Health, 16(1), 1‑14. https://doi.org/10.1186/s12889‑016‑3114-x DOI
Ruf, B.R., & Knuf, M. (2014). The burden of seasonal and pandemic influenza in infants and children. European Journal of Pediatrics, 173, 265‑276. https://doi.org/10.1007/s00431‑013‑2023‑6 DOI
Sagripanti, J.-L., & Lytle, C.D. (2007). Inactivation of Influenza Virus by Solar Radiation. Photochemistry and Photobiology, 83(5), 1278‑1282. https://doi.org/10.1111/j.1751‑1097.2007.00177.x DOI
Salah, B., Dinh Xuan, A.T., Fouilladieu, J.L., Lockhart, A., & Regnard, J. (1988). Nasal mucociliary transport in healthy subjects is slower when breathing dry air. European Respiratory Journal, 1(9), 846‑849.
Schulman, J.L., & Kilbourne, E.D. (1963). Experimental transmission of influenza virus infection in mice. II. some factors affecting the incidence of transmitted infection. The Journal of Experimental Medicine, 118(2), 267‑275. https://doi.org/10.1084/jem.118.2.267 DOI
Shaman, J., & Kohn, M. (2009). Absolute humidity modulates influenza survival, transmission, and seasonality. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3243‑3248. https://doi.org/10.1073/pnas.0806852106 DOI
Shaman, J., Pitzer, V.E., Viboud, C., Grenfell, B.T., & Lipsitch, M. (2010). Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biology, 8(2), e1000316. https://doi.org/10.1371/journal.pbio.1000316 DOI
Shaw Stewart, P.D. (2016). Seasonality and selective trends in viral acute respiratory tract infections. Medical Hypotheses, 86, 104‑119. https://doi.org/10.1016/j.mehy.2015.11.005 DOI
Shoji, M., Katayama, K., & Sano, K. (2011). Absolute humidity as a deterministic factor affecting seasonal influenza epidemics in Japan. Tohoku Journal of Experimental Medicine, 224, 251‑256. https://doi.org/10.1620/tjem.224.251 DOI
Simonsen, L. (1999). The global impact of influenza on morbidity and mortality. Vaccine, 17 (Supplement 1), 3-10. https://doi.org/10.1016/S0264‑410X (99)00099‑7 DOI
Su, W., Wu, X., Geng, X., Zhao, X., Liu, Q., & Liu, T. (2019). The short-term effects of air pollutants on influenza-like illness in Jinan, China. BMC Public Health, 19(1), 1‑12. https://doi.org/10.1186/s12889‑019‑7607‑2 DOI
Sundell, N., Andersson, L.M., Brittain-Long, R., Lindh, M., & Westin, J. (2016). A four year seasonal survey of the relationship between outdoor climate and epidemiology of viral respiratory tract infections in a temperate climate. Journal of Clinical Virology, 84, 59‑63. https://doi.org/10.1016/j.jcv.2016.10.005 DOI
Tamerius, J., Nelson, M.I., Zhou, S.Z., Viboud, C., Miller, M.A., & Alonso, W.J. (2011). Global influenza seasonality: Reconciling patterns across temperate and tropical regions. Environmental Health Perspectives, 119(4), 439‑445. https://doi.org/10.1289/ehp.1002383 DOI
Tang, J.W., Lai, F.Y.L., Nymadawa, P., Deng, Y.-M., Ratnamohan, M., Petric, M., Loh, T.P., Tee, N.W.S., Dwyer, D.E., Barr, I.G., & Wong, F.Y.W. (2010). Comparison of the incidence of influenza in relation to climate factors during 2000‑2007 in five countries. Journal of Medical Virology, 82(11), 1958‑1965. https://doi.org/10.1002/jmv.21892 DOI
Tellier, R. (2006). Review of aerosol transmission of influenza A virus. Emerging Infectious Diseases, 12, 1657‑1662. https://doi.org/10.3201/eid1211.060426 DOI
Urashima, M., Segawa, T., Okazaki, M., Kurihara, M., Wada, Y., & Ida, H. (2010). Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. American Journal of Clinical Nutrition, 91(5), 1255‑1260. https://doi.org/10.3945/ajcn.2009.29094 DOI
Valenciano, M., Kissling, E., & I-MOVE Case-Control Study Team. (2013). Early estimates of seasonal influenza vaccine effectiveness in Europe: results from the I-MOVE multicentre case-control study, 2012/13. Eurosurveillance, 18(7), 3. https://doi.org/https://doi.org/10.2807/ese.18.07.20400-en DOI
Van Noort, S.P., Águas, R., Ballesteros, S., & Gomes, M.G.M. (2012). The role of weather on the relation between influenza and influenza-like illness. Journal of Theoretical Biology, 298, 131‑137. https://doi.org/10.1016/j.jtbi.2011.12.020 DOI
Wang, X.L., Yang, L., He, D.H., Chiu, A.P., Chan, K.H., Chan, K.P., Zhou, M., Wong, C.M., Guo, Q., & Hu, W. (2017). Different responses of influenza epidemic to weather factors among Shanghai, Hong Kong, and British Columbia. International Journal of Biometeorology, 61(6), 1043‑1053. https://doi.org/10.1007/s00484‑016‑1284-y DOI
Weber, T.P., & Stilianakis, N.I. (2008). Inactivation of influenza A viruses in the environment and modes of transmission: A critical review. Journal of Infection, 57, 361‑373. https://doi.org/10.1016/j.jinf.2008.08.013 DOI
WHO. (2020). Virology of human influenza. Pobrane z: http://www.euro.who.int/en/health-top‑ics/communicable-diseases/influenza/data-and-statistics/virology-of-human-influenza (26.03.2020).
Wiemken, T.L., Mattingly, W.A., Furmanek, S.P., Guinn, B.E., English, C.L., Carrico, R.M., Peyrani, P., & Ramirez, J.A. (2017). Impact of Temperature Relative Humidity and Absolute Humidity on the incidence of hospitalizations for lower respiratory tract infections due to influenza, rjinovirus, and respiratory syncytial virus: results from community-axquired pneumonia organization. University of Louisville Journal of Respiratory Infections, 1(3), 27‑35. https://doi.org/10.18297/jri/vol1/iss3/7 DOI
Xiao, H., Tian, H., Lin, X., Gao, L., Dai, X., Zhang, X., Chen, B., Zhao, J., & Xu, J. (2013). Influence of extreme weather and meteorological anomalies on outbreaks of influenza A (H1N1). Chinese Science Bulletin, 58(7), 741‑749. https://doi.org/10.1007/s11434‑012‑5571‑7 DOI
Yaari, R., Katriel, G., Huppert, A., Axelsen, J.B., & Stone, L. (2013). Modelling seasonal influenza: The role of weather and punctuated antigenic drift. Journal of the Royal Society Interface, 10(84). https://doi.org/10.1098/rsif.2013.0298 DOI
Zambon, M., Stockton, J., Clewley, J., & Fleming, D. (2001). Contribution of influenza and respiratory syncytial virus to community cases of influenza-like illness: an observational study. The Lancet, 358(9291), 1410‑1416. https://doi.org/10.1016/S0140‑6736 (01)06528-X DOI


Przegląd Geograficzny





Start page:


End page:


Resource type:


Detailed Resource Type:




Resource Identifier:

0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2021.1.6


CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link



Language of abstract:



Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Operational Program Digital Poland, 2014-2020, Measure 2.3: Digital accessibility and usefulness of public sector information; funds from the European Regional Development Fund and national co-financing from the state budget.





Citation style: