RCIN and OZwRCIN projects

Object

Title: Where the Meghalayan meets the Anthropocene: Stratigraphic signals of human-environmental interactions on the periphery of Indian civilisation

Creator:

Prokop, Paweł : Autor Affiliation ORCID

Date issued/created:

2020

Resource type:

Text

Subtitle:

Geographia Polonica Vol. 93 No. 4 (2020)

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Description:

24 cm

Type of object:

Journal/Article

Abstract:

The aims of this study were to review human-environment interactions during the Meghalayan and to search for the stratigraphic boundary of a new epoch, informally termed the Anthropocene, as well as to determine whether the stratigraphic signals of human activity on the Meghalaya Plateau in Northeast India can be correlated globally. This plateau is the base of the Meghalayan Age that was determined from a speleothem in a cave located on it. Review indicates that study region developed on the periphery of ancient Indian civilisation, with stratigraphic signals of human activity being apparent in only the last few thousand years; that is, substantially later than the neighbouring ancient Indian civilisation. The stratigraphic signals are heterogeneous and diachronous, not only as a result of various human activities, but also in the effect of the diverse sensitivities of the environment to anthropogenic disturbances. A discrete and visible cultural layer that relates to the development of settlements and the production of new materials is still being formed and reworked. The only synchronous stratigraphic signal with a global range seems to be associated with the artificial radionuclide fallout from nuclear weapons testing, which covers a topsoil layer of up to tens of centimetres thick.

References:

Alley, R.B., Ágústsdóttir, A.M. (2005). The 8k event: Cause and consequences of a major Holocene abruptclimate change. Quaternary Science Reviews, 24(10-11), 1123-1149. https://doi.org/10.1016/j.quascirev.2004.12.004 DOI
An, L. (2012). Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecological Modelling, 229, 25-36. https://doi.org/10.1016/j.ecolmodel.2011.07.010 DOI
Arz, H.W., Lamy, F., & Pätzold, J. (2006). A pronounced dry event recorded around 4.2 ka in brine sediments from the northern Red Sea. Quaternary Research, 66(3), 432-441. https://doi.org/10.1016/j.yqres.2006.05.006 DOI
Barnosky, A.D., Koch, P.L., Feranec, R.S., Wing, S.L., Shabel, A.B. (2004). Assessing the causes of late Pleistocene extinctions on the continents. Science, 306(5693), 70-75. https://doi.org/10.1126/science.1101476 DOI
Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F.S., Yoshimura, K. (2012). An abrupt shift in the Indian monsoon 4000 years ago. Geophysical Monographs Series, 198, 75-87. https://doi.org/10.1029/2012GM001207 DOI
Bor, N.L. (1942). Relict vegetation of Shillong Plateau-Assam. Indian Forest Records, 3, 152-195.
Breitenbach, S. (2009). Changes in monsoonal precipitation and atmospheric circulation during the Holocene reconstructed from stalagmites from Northeastern India. Ph.D. Thesis, University of Potsdam, Potsdam, Germany.
Breitenbach, S.F., Lechleitner, F.A., Meyer, H., Diengdoh, G., Mattey, D., & Marwan, N. (2015). Cave ventilation and rainfall signals in dripwater in a monsoonal setting - a monitoring study from NE India. Chemical Geology, 402, 111-124. https://doi/org/10.1016/j.chemgeo.2015.03.011 DOI
Broecker, W.S., Stocker, T.F. (2006). The Holocene CO2 rise: Anthropogenic or natural? Eos. Earth & Space Science News, 87(3), 27-27. https://doi.org/10.1029/2006EO030002 DOI
Booth, R.K., Jackson, S.T., Forman, S.L., Kutzbach, J.E., Bettis Iii, E.A., Kreigs, J., Wright, D.K. (2005). A severe centennial-scale drought in midcontinental North America 4200 years ago and apparent global linkages. The Holocene, 15(3), 321-328. https://doi.org/10.1191/0959683605hl825ft DOI
Certini, G., Scalenghe, R. (2011). Anthropogenic soils are the golden spikes for the Anthropocene. The Holocene, 21(8), 1269-1274. https://doi.org/10.1177/0959683611408454 DOI
Chaudhary, V., Bhattacharyya, A. (2002). Suitability of Pinus kesiya in Shillong, Meghalaya for tree-ring analyses. Current Science, 83(8), 1010-1015.
Clarke, C.B. (1874). The Stone Monuments of the Khasi Hills. The Journal of the Anthropological Institute of Great Britain and Ireland, 3, 481-493. https://doi.org/10.2307/2840920 DOI
Cracroft, W. (1832). Smelting of iron in the Kasya Hills. Journal Asiatic Society of Bengal, 1, 150-151.
Crutzen, P.J. (2002). Geology of mankind. Nature 415(6867), 23. https://doi.org/10.1038/415023a DOI
Crutzen, P.J., Stoermer, E.F. (2000). The "Anthropocene". Global Change Newsletter, 41, 17-18.
Diamond, J. (2002). Evolution, consequences and future of plant and animal domestication. Nature, 418(6898), 700-707. https://doi.org/10.1038/nature01019 DOI
Dixit, Y., Hodell, D.A., Petrie, C.A. (2014). Abrupt weakening of the summer monsoon in northwest India~4100 yr ago. Geology, 42(4), 339-342. https://doi.org/10.1130/G35236.1 DOI
Dutt, S., Gupta, A K., Clemens, S.C., Cheng, H., Singh, R.K., Kathayat, G., & Edwards, R.L. (2015). Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years BP. Geophysical Research Letters, 42(13), 5526-5532. https://doi.org/10.1002/2015GL064015 DOI
Edgeworth, M., deB Richter, D., Waters, C., Haff, P., Neal, C., Price, S.J. (2015). Diachronous beginnings of the Anthropocene: The lower bounding surface of anthropogenic deposits. The Anthropocene Review, 2(1), 33-58. https://doi.org/10.1177/2053019614565394 DOI
Edgeworth, M., Ellis, E.C., Gibbard, P., Neal, C., Ellis, M. (2019). The chronostratigraphic method is unsuitable for determining the start of the Anthropocene. Progress in Physical Geography: Earth and Environment, 43(3), 334-344. https://doi.org/10.1177/0309133319831673 DOI
Ellis, E.C. (2011). Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1938), 1010-1035. https://doi.org/10.1098/rsta.2010.0331 DOI
Fergusson, J. (1872). Rude stone monuments in all countries: their age and uses. London: J. Murray.
Ford, J.R., Price, S.J., Cooper, A.H., Waters, C.N. (2014). An assessment of lithostratigraphy for anthropogenic deposits. Geological Society, London, Special Publications, 395(1), 55-89. http://dx.doi.org/10.1098/rsta.2010.0331 DOI
Froehlich, W. (2004). Soil erosion, suspended sediment sources and deposition in the Maw-Ki-Syiem drainage basin, Cherrapunji, northeastern India. IAHS Publication, 288, 138-146.
Fuller, D.Q., Van Etten, J., Manning, K., Castillo, C., Kingwell-Banham, E., Weisskopf, A., … Hijmans, R.J. (2011). The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: An archaeological assessment. The Holocene, 21(5), 743-759. https://doi.org/10.1177/0959683611398052 DOI
Gale, S.J., Hoare, P.G. (2012). The stratigraphic status of the Anthropocene. The Holocene, 22(12), 1491-1494. https://doi.org/10.1177/0959683612449764 DOI
Gebauer, H.D. (2008). Resources on the speleology of Meghalaya state, India. Part 1: overview. Berliner Höhlenkundliche Berichte, 33, 152.
Gibbard, P.L., Walker, M.J.C. (2014). The term 'Anthropocene'in the context of formal geological classification. Geological Society, London, Special Publications, 395(1), 29-37. https://doi.org/10.1144/SP395.1 DOI
Glikson, A. (2013). Fire and human evolution: the deep-time blueprints of the Anthropocene. Anthropocene, 3, 89-92. https://doi.org/10.1016/j.ancene.2014.02.002 DOI
Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G. (Eds.). (2012). The geologic time scale 2012. Elsevier. https://doi.org/10.1127/0078-0421/2012/0020 DOI
Gullapalli, P. (2009). Early metal in South India: copper and iron in megalithic contexts. Journal of World Prehistory, 22(4), 439-459. https://doi.org/10.1007/s10963-009-9028-0 DOI
Hazarika, M. (2017). Prehistory and archaeology of northeast India: multidisciplinary investigation in an archaeological terra incognita. Oxford University Press. https://doi.org/10.1093/oso/9780199474660.001.0001 DOI
Hazarika, M. (2019). Neolithic pottery of Eastern Himalaya and Northeast India. Development of Neolithic Cultures and diversity of pottery, Amsadong Site Research Series, Vol. 3, Seoul, South Korea, pp. 79-108.
Hodges, H. (1992). Technology in the ancient world. New York: Barnes & Noble Publishing.
Hong, S., Candelone, J.P., Patterson, C.C., Boutron, C.F. (1996). History of ancient copper smelting pollution during Roman and medieval times recorded in Greenland ice. Science, 272(5259), 246-249. https://doi.org/10.1126/science.272.5259.246 DOI
Hooke, R.L. (2000). On the history of humans as geomorphic agents. Geology, 28(9), 843-846. https://doi.org/10.1130/0091-7613(2000)28<843:OTHOHA>2.0.CO;2 DOI
Hooker, J.D. (1854).Himalayan Journals: Notes of a naturalist in Bengal, the Sikkim and Nepal Himalayas, the Khasia Mountains. In two volumes. London: J. Murray. https://doi.org/10.5962/bhl.title.60447 DOI
Huguet, C., Routh, J., Fietz, S., Lone, M.A., Kalpana, M.S., Ghosh, P., … Rangarajan, R. (2018). Temperature and monsoon tango in a tropical stalagmite: last glacial-interglacial climate dynamics. Scientific Reports, 8(1), 5386. https://doi.org/10.1038/s41598-018-23606-w DOI
Hunter, W.W. (1879). A statistical account of Assam (Vol. 2). Trübner & Company.
Kaplan, J.O., Krumhardt, K.M., Ellis, E.C., Ruddiman, W.F., Lemmen, C., & Goldewijk, K.K. (2011). Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene, 21(5), 775-791. https://doi.org/10.1177/0959683610386983 DOI
Karunakaran, C. (1974). Geology and mineral resources of the states of India. Part IV-Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland and Tripura. Geologial Survey of India Miscellaneous Publication, 30(4), 93-101.
Kaushal, N., Breitenbach, S.F., Lechleitner, F.A., Sinha, A., Tewari, V.C., Ahmad, S.M., … Henderson, G.M. (2018). The indian summer monsoon from a speleothem δ18O perspective-A Review. Quaternary, 1(3), 29. https://doi.org/10.3390/quat1030029 DOI
Kleiven, H.K.F., Kissel, C., Laj, C., Ninnemann, U.S., Richter, T.O., Cortijo, E. (2008). Reduced North Atlantic deep water coeval with the glacial Lake Agassiz freshwater outburst. Science, 319(5859), 60-64. https://doi.org/10.1126/science.1148924 DOI
Larson, G., Piperno, D.R., Allaby, R.G., Purugganan, M.D., Andersson, L., Arroyo-Kalin, M., … Doust, A.N. (2014). Current perspectives and the future of domestication studies. Proceedings of the National Academy of Sciences, 111(17), 6139-6146. https://doi.org/10.1073/pnas.1323964111 DOI
Lechleitner, F.A., Breitenbach, S.F., Cheng, H., Plessen, B., Rehfeld, K., Goswami, B., … Haug, G. (2017). Climatic and in-cave influences on δ18O and δ13C in a stalagmite from northeastern India through the last deglaciation. Quaternary Research, 88(3), 458-471. https://doi.org/10.1017/qua.2017.72 DOI
Lewis, S.L., Maslin, M.A. (2015). Defining the anthropocene. Nature, 519(7542), 171-180. https://doi.org/10.1038/nature14258 DOI
Li, C.H., Li, Y.X., Zheng, Y.F., Yu, S.Y., Tang, L.Y., Li, B.B., Cui, Q.Y. (2018). A high-resolution pollen record from East China reveals large climate variability near the Northgrippian-Meghalayan boundary (around 4200 years ago) exerted societal influence. Palaeogeography, Palaeoclimatology, Palaeoecology, 512, 156-165. https://doi.org/10.1016/j.palaeo.2018.07.031 DOI
Lindsay, R. Lord, (1840). Lives of the Lindsays, or a memoir of the houses of Crawford and Balcarres to which are added, extracts from the official correspondence of Alex., Sixth Earl of Balcarres, during the Maroon War; Together with personal narratives by his brothers, the Hon. Robert, Colin, James, John, and Hugh Lindsay, 4 vol., Privately printed, Wigan.
Liu, F., Feng, Z. (2012). A dramatic climatic transition at ~4000 cal. yr BP and its cultural responses in Chinese cultural domains. The Holocene, 22(10), 1181-1197. https://doi.org/10.1177/0959683612441839 DOI
Mazumder, S.K. (1986). The Precambrian framework of part of the Khasi Hills, Meghalaya. Records of the Geological Survey of India, 117(2).
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlén, W., Maasch, K.A., Meeker, L.D., … Lee-Thorp, J. (2004). Holocene climate variability. Quaternary Research, 62(3), 243-255. https://doi.org/https://doi.org/10.1016/j.yqres.2004.07.001 DOI
Migoń, P., Prokop, P. (2013). Landforms and landscape evolution in the Mylliem Granite Area, Meghalaya Plateau, Northeast India. Singapore Journal of Tropical Geography, 34(2), 206-228. https://doi.org/10.1111/sjtg.12025 DOI
Mitri, M., Kharmawphlang, D., & Syiemlieh, H. (2015). A preliminary report on the excavation of the Neolithic site at Law-Nongthroh (SohpetBneng Hill), Khasi Hills, Meghalaya. Man and Environment, 40(1), 33-42.
Mitri, M., Neog, D. (2016). Preliminary report on the excavations of Neolithic sites from Khasi Hills Meghalaya. Ancient Asia, 7, 1-17. http://dx.doi.org/10.5334/aa.119 DOI
Oldham, T. (1854). Geological structure of part of the Khasi Hills with observations on the meteorology and ethnology of that district. Calcutta: Bengal Military Orphan Press.
Pennington, B.T., Hamdan, M.A., Pears, B.R., Sameh, H.I. (2019). Aridification of the Egyptian Sahara 5000-4000 cal BP revealed from x-ray fluorescence analysis of Nile Delta sediments at Kom alAhmer/Kom Wasit. Quaternary International, 514, 108-118. https://doi.org/10.1016/j.quaint.2019.01.015 DOI
Poręba, G., Bluszcz, A. (2007). Determination of the initial 137Cs fallout on the areas contaminated by Chernobyl fallout. Geochronometria, 26(1), 35-38. https://doi.org/10.2478/v10003-007-0009-y DOI
Poręba, G., Prokop, P. (2011). Estimation of soil erosion on cultivated fields on the hilly Meghalaya Plateau, North-East India. Geochronometria, 38(1), 77-84. https://doi.org/10.2478/s13386-011-0008-7 DOI
Prokop, P. (2014). The Meghalaya Plateau: landscapes in the abode of the clouds. In V.S. Kale (Ed), Landscapes and landforms of India (pp. 173-180). Dordrecht: Springer. https://doi.org/10.1007/978-94-017-8029-2_17 DOI
Prokop, P. (2016). Land use and land cover changes in the area with the highest rainfall in the world (Meghalaya Plateau, India): Causes and implications. In Environmental geography of South Asia (pp. 143-159). Springer, Tokyo. https://doi.org/10.1007/978-4-431-55741-8_9 DOI
Prokop, P., Bhattacharyya, A. (2011). Environmental response to human impact on the Meghalaya Plateau (NE India) during the last 2500 yrs BP. International Association of Geomorphologists Regional Conference Abstract Volume, Ethiopia, 18-22 February, p. 125.
Prokop, P., Bhattacharyya, A. (2011). Reconnaissance of quaternary sediments from Khasi Hills, Meghalaya. Journal of the Geological Society of India, 78(3), 258-262. https://doi.org/10.1007/s12594-011-0084-6 DOI
Prokop, P., Kruczkowska, B., Syiemlieh, H.J., Bucała-Hrabia, A. (2018). Impact of topography and sedentary swidden cultivation on soils in the hilly uplands of North-East India. Land Degradation & Development, 29(8), 2760-2770. https://doi.org/10.1002/ldr.3018 DOI
Prokop, P., Suliga, I. (2013). Two thousand years of iron smelting in the Khasi Hills, Meghalaya, North East India. Current Science, 761-768.
Prokop, P., Walanus, A. (2015). Variation in the orographic extreme rain events over the Meghalaya Hills in northeast India in the two halves of the twentieth century. Theoretical and Applied Climatology, 121(1-2), 389-399. https://doi.org/10.1007/s00704-014-1224-x DOI
Ramakrishnan, P.S. (1992). Shifting agriculture and sustainable development: an interdisciplinary study from north-eastern India. Parthenon Publications, Carnforth, UK.
Rączkowska, Z., Bucała-Hrabia, A., Prokop, P. (2018). Geomorphological and sedimentological indicators of land degradation (Meghalaya Plateau, NE India). Land Degradation & Development, 29(8), 2746-2759. https://doi.org/10.1002/ldr.3020 DOI
Ronay, E.R., Breitenbach, S.F., Oster, J.L. (2019). Sensitivity of speleothem records in the Indian Summer Monsoon region to dry season infiltration. Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-41630-2 DOI
Ruddiman, W.F. (2003). The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61(3), 261-293. https://doi.org/10.1023/B:CLIM.0000004577.17928.fa DOI
Ruddiman, W.F. (2013). The anthropocene. Annual Review of Earth and Planetary Sciences, 41, 45-68. https://doi.org/10.1146/annurev-earth-050212-123944 DOI
Ruddiman, W.F. (2018). Three flaws in defining a formal 'Anthropocene'. Progress in Physical Geography: Earth and Environment, 42(4), 451-461. https://doi.org/10.1177/0309133318783142 DOI
Ruddiman, W.F., Fuller, D.Q., Kutzbach, J.E., Tzedakis, P.C., Kaplan, J.O., Ellis, E.C., … Lemmen, C. (2016). Late Holocene climate: Natural or anthropogenic?. Reviews of Geophysics, 54(1), 93-118. https://doi.org/10.1002/2015RG000503 DOI
Ruddiman, W.F., Ellis, E.C., Kaplan, J.O., Fuller, D.Q. (2015). Defining the epoch we live in. Science, 348(6230), 38-39. https://doi.org/10.1126/science.aaa7297 DOI
Sarmiento, J.L., Gwinn, E. (1986). Strontium 90 fallout prediction. Journal of Geophysical Research: Oceans, 91(C6), 7631-7646. https://doi.org/10.1029/JC091iC06p07631 DOI
Shankar, U., Boral, L., Pandey, H.N., Tripathi, R.S. (1993). Degradation of land due to coal mining and its natural recovery pattern. Current Science, 680-687.
Singarayer, J.S., Valdes, P.J., Friedlingstein, P., Nelson, S., Beerling, D.J. (2011). Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature, 470(7332), 82-85. https://doi.org/10.1038/nature09739 DOI
Snowball, I., Hounslow, M.W., Nilsson, A. (2014). Geomagnetic and mineral magnetic characterization of the Anthropocene. Geological Society, London, Special Publications, 395(1), 119-141. https://doi.org/10.1144/SP395.13 DOI
Soja, R., & Starkel, L. (2007). Extreme rainfalls in Eastern Himalaya and southern slope of Meghalaya Plateau and their geomorphologic impacts. Geomorphology, 84(3-4), 170-180. https://doi.org/10.1016/j.geomorph.2006.01.040 DOI
Starkel, L., Singh, S. (Eds.) (2004). Rainfall, runoff and soil erosion in the globally extreme humid area, Cherrapunji region, India. In Prace Geograficzne, 191. Warsaw: Institute of Geography and Spatial Organization.
Staubwasser, M., Sirocko, F., Grootes, P.M., Segl, M. (2003). Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters, 30(8). https://doi.org/10.1029/2002GL016822 DOI
Steffen, W., Crutzen, P.J., McNeill, J.R. (2007). The Anthropocene: are humans now overwhelming the great forces of nature. Ambio, 36(8), 614-621. https://doi.org/10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2 DOI
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Brecher, H.H., Zagorodnov, V.S., … Beer, J. (2002). Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science, 298(5593), 589-593. https://doi.org/10.1126/science.1073198 DOI
Waters, C.N., Zalasiewicz, J. (2018). Concrete: the most abundant novel rock type of the Anthropocene. In D.A. Dellasala, M.I. Goldstein (eds.), Encyclopedia of the Anthropocene, 1, (pp. 75-85). Elsevier. https://doi.org/10.1016/B978-0-12-809665-9.09775-5 DOI
Waters, C.N., Zalasiewicz, J., Summerhayes, C., Fairchild, I.J., Rose, N.L., Loader, N.J., … Williams, M. (2018). Global Boundary Stratotype Section and Point (GSSP) for the Anthropocene Series: Where and how to look for potential candidates. Earth-Science Reviews, 178, 379-429. https://doi.org/10.1016/j.earscirev.2017.12.016 DOI
Walker, M., Head, M.J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar, L., … Newnham, R. (2018). Formal ratification of the subdivision of the Holocene Series/Epoch (Quaternary System/Period): two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/subseries. Episodes,41(4), 213-223. https://doi.org/10.18814/epiiugs/2018/018016 DOI
Walker, M., Johnsen, S., Rasmussen, S.O., Popp, T., Steffensen, J.P., Gibbard, P., … Cwynar, L.C. (2009). Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. Journal of Quaternary Science, 24(1), 3-17. https://doi.org/10.1002/jqs.1227 DOI
Weiss, H. (2017). 4.2 ka BP Megadrought and the Akkadian Collapse. Megadrought and Collapse: from early agriculture to Angkor. In Weiss, H, (Ed.) Oxford University Press, Oxford, 93-160. https://doi.org/10.1093/oso/9780199329199.003.0004 DOI
Wolfe, A.P., Hobbs, W.O., Birks, H.H., Briner, J.P., Holmgren, S.U., Ingólfsson, Ó., … Vinebrooke, R.D. (2013). Stratigraphic expressions of the Holocene-Anthropocene transition revealed in sediments from remote lakes. Earth-Science Reviews, 116, 17-34. https://doi.org/10.1016/j.earscirev.2012.11.001 DOI
Wu, X., Zhang, C., Goldberg, P., Cohen, D., Pan, Y., Arpin, T., Bar-Yosef, O. (2012). Early pottery at 20,000 years ago in Xianrendong Cave, China. Science, 336(6089), 1696-1700. https://doi.org/10.1126/science.1218643 DOI
Zalasiewicz, J., Gabbott, S., Waters, C.N. (2019). Plastic waste: How plastics have become part of the Earth's geological cycle. In Waste (pp. 443-452). Academic Press. https://doi.org/10.1016/B978-0-12-815060-3.00023-2 DOI
Zalasiewicz, J., Waters, C.N., Head, M.J., Poirier, C., Summerhayes, C.P., Leinfelder, R., … McNeill, J.R. (2019). A formal Anthropocene is compatible with but distinct from its diachronous anthropogenic counterparts: a response to WF Ruddiman's 'three flaws in defining a formal Anthropocene'. Progress in Physical Geography: Earth and Environment, 43(3), 319-333. https://doi.org/10.1177/0309133319832607 DOI
Zalasiewicz, J., Waters, C.N., Williams, M., Barnosky, A.D., Cearreta, A., Crutzen, P., … Haff, P.K. (2015). When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quaternary International, 383, 196-203. http://dx.doi.org/10.1016/j.quaint.2014.11.045 DOI
Zalasiewicz, J., Waters, C.N., Williams, M., Summerhayes, C.P., Head, M.J., Leinfelder, R., … Wing, S. (2019). History and development of the Anthropocene as a stratigraphic concept. In The Anthropocene as a geological time unit: A guide to the scientific evidence and current debate, 1. (pp. 1-40), UK: Cambridge University Press. https://doi.org/10.1017/9781108621359.001 DOI

Relation:

Geographia Polonica

Volume:

93

Issue:

4

Start page:

505

End page:

523

Detailed Resource Type:

Article

Resource Identifier:

oai:rcin.org.pl:153564 ; 0016-7282 ; 10.7163/GPol.0185

Source:

CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at:

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Operational Program Digital Poland, 2014-2020, Measure 2.3: Digital accessibility and usefulness of public sector information; funds from the European Regional Development Fund and national co-financing from the state budget.

Access:

Open

Object collections:

Last modified:

Mar 31, 2023

In our library since:

Dec 22, 2020

Number of object content downloads / hits:

952

All available object's versions:

https://rcin.org.pl/igipz/publication/187633

Show description in RDF format:

RDF

Show description in RDFa format:

RDFa

Show description in OAI-PMH format:

OAI-PMH

Objects Similar

×

Citation

Citation style:

This page uses 'cookies'. More information