RCIN and OZwRCIN projects

Object

Title: Seasonal Variations in Melatonin Secretory Rhythms in High-, Middle-, and Low-Latitude Regions

Creator:

Morita, Takeshi : Autor Affiliation Affiliation ; Błażejczyk, Krzysztof : Autor Affiliation ORCID

Date issued/created:

2023

Resource type:

Text

Subtitle:

Przegląd Geograficzny T. 95 z. 3 (2023)

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Description:

24 cm

Abstract:

This study aims to measure the daily melatonin secretory rhythms of people living in high-, mid-, and low-latitude regions characterised by different day lengths and global solar-radiation conditions. In Poland, a high-latitude region, the amount of melatonin secretion is greater, with secretion occurring earlier (exemplifying phase advance). On the other hand, in Vietnam, a low-latitude region, the level is lower and occurs later (phase delay). Japan, a mid-latitude region, shows behaviour intermediate between these two. Melatonin secretory rhythm in Vietnam is closely related to Day length and Global Solar Radiation, though no such relationship is observed in Poland or Japan, making it necessary for other factors to be considered. The results of this study have important implications considering the impacts of light pollution and lighting-related conditions of modern life.
; This study aims to measure the daily melatonin secretory rhythms of people living in high-, mid-, and low-latitude regions characterised by different day lengths and global solar-radiation conditions. In Poland, a high-latitude region, the amount of melatonin secretion is greater, with secretion occurring earlier (exemplifying phase advance). On the other hand, in Vietnam, a low-latitude region, the level is lower and occurs later (phase delay). Japan, a mid-latitude region, shows behaviour intermediate between these two. Melatonin secretory rhythm in Vietnam is closely related to Day length and Global Solar Radiation, though no such relationship is observed in Poland or Japan, making it necessary for other factors to be considered. The results of this study have important implications considering the impacts of light pollution and lighting-related conditions of modern life.

References:

Błażejczyk, B., Morita, T., Ueno-Towatari, T., Błażejczyk, A., & Wieczorek, J. (2014). Seasonal and regional differences in lighting conditions and their influence on melatonin secretion. Quaestiones Geographicae, 33(3), 17‑25. https://doi.org/10.2478/quageo-2014-0026 DOI
Burgess, H.J., & Fogg, L.F. (2008). Individual differences in the amount and timing of salivary melatonin secretion. PLoS One, 3, e3055. https://doi.org/10.1371/journal.pone.0003055 DOI
Cain, S.W., Dennison, C.F., Zeitzer, J.M., Guzik, A.M., Khalsa, S.B., Snthi, N., Scoen, M.W., Czeisler, C.A., & Duffy, J.F. (2010). Sex differences in phase angle of entrainment and melatonin amplitude in humans. Journal of Biological Rhythms, 25(4), 288‑296. https://doi.org/10.1177/0748730410374943 DOI
Cutler, N.L., Lewy, A.L., Sack, R.L. & Ahmed, S. (1995). Stability in timing and amplitude of melatonin production across four seasons in humans. Sleep Res, 24, 517.
Czarnecka, K., Błażejczyk, K., & Morita, T. (2021). Characteristics of light pollution - A case study of Warsaw (Poland) and Fukuoka (Japan). Environmental Pollution, 291, 1‑8. https://doi.org/10.1016/j.envpol.2021.118113 DOI
Duffy, J.F., & Wright, K.P.Jr. (2005). Entrainment of the human circadian system by light. Journal of Biological Rhythms, 20(4), 326‑338. https://doi.org/10.1177/0748730405277983 DOI
Fideleff, H.L., Boquete, H., Fideleff, G., Albornoz, L., Perez Lloret, S., Suarez, M. Esquifino, A.I., Honfi, M., & Cardinali, D.P. (2006). Gender-re; ated differences in urinary 6-sulfatoxymelatonin levels in obese pubertal individuals. Journal of Pineal Research, 40(3), 214‑218. https://doi.org/10.1111/j.1600-079X.2005.00301.x DOI
Hébert, M., Martin, S.K., Lee, C., & Eastman, C.I. (2002). The effects of prior light history on the suppression of melatonin by light in humans. Journal of Pineal Research. 33(4), 198‑203. https://doi.org/10.1034/j.1600-079x.2002.01885.x DOI
Higuchi, S., Motohashi, Y., Ishibashi, K., & Maeda, T. (2007). Less exposure to daily ambient light in winter increases sensitivity of melatonin to light suppression. Chronobiology International, 24(1), https://doi.org/10.1080/07420520601139805
Higuchi, S., Motohashi, Y., Ishibashi, K., & Maeda, T. (2007). Influence of eye colors of Caucasians and Asians on suppression of melatonin secretion by light. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292(6), R2352-R2356. https://doi.org/10.1152/ajpregu.00355.2006 DOI
Honma, K., Honma, S., Kohsaka, M., & Fukuda, N. (1992). Seasonal variation in the human circadian rhythm: dissociation between sleep and temperature rhythm. American Journal of Physiology, 262(5), R885-R891. https://doi.org/10.1152/ajpregu.1992.262.R885 DOI
Illnerova, H., Zvolsky, P., & Vanecek, J. (1985). The circadian rhythm in plasma melatonin concentration of the urbanized man. Brain Res, 328(1), 186‑189. https://doi.org/10.1016/0006-8993(85)91342-3 DOI
Kennaway, D.J., & Royles, P. (1986). Circadian rhythms of 6-sulphatoxy melatonin, cortisol and electrolyte excretion at the summer and winter solstices in normal men and women. Acta Endocrinol (Copenh), 113(3), 450‑456. https://doi.org/10.1530/acta.0.1130450 DOI
Kivela, A., Kauppila, A., Ylostalo, P., Vakkuri, O., & Leppaluoto, J. (1988). Seasonal, menstrual and circadian secretions of melatonin, gonadotropins and prolactin in women. Acta physiologica Scandinavica, 132(3), 321‑327. https://doi.org/10.1111/j.1748-1716.1988.tb08335.x DOI
Lewy, A.L. (2007). Melatonin and human chronobiology. Cold Spring Harbor Symposia on Quantitative Biology, 72, 623‑636. https://doi.org/10.1101/sqb.2007.72.055 DOI
Morera, A.L., & Abreu, P. (2006). Seasonality of psychopathology and circannual melatonin rhythm. Journal of Pineal Research, 41(3), 279‑283. https://doi.org/10.1111/j.1600-079x.2006.00365.x DOI
Nathan, P.J., Wyndham, E.L., Burrows, G.D., & Norman, T.R. (2000). The effect of gender on the melatonin suppression by light: a dose response relationship. Journal of Neural Transmission, 107(3), 271‑279. https://doi.org/10.1007/s007020050022 DOI
Owen, J., & Arendt, J. (1992). Melatonin suppression in human subjects by bright and dim light in Antarctica: time and season-dependent effects. Neuroscience Letters, 137(2), 181‑184. https://doi.org/10.1016/0304-3940(92)90399-r DOI
Reiter, R.J. (1993). The melatonin rhythm: both a clock and a calendar. Experientia, 49(8), 654‑664. https://doi.org/10.1007/BF01923947 DOI
Riemann, D., Klein, T., Rodenbeck, A., Feige, B., Horny, A., Hummel, R., Weske, G., Al-Shajlawi, A., & Voderholzer, U. (2002). Nocturnal cortisol and melatonin secretion in primary insomnia. Psychiatry Research, 113, 17‑27. https://doi.org/10.1016/s0165-1781(02)00249-4 DOI
Roenneberg, T., & Foster, R.G. (1997). Twilight times: light and the circadian system. Photochemistry and Photobiology, 66, 549‑561. https://doi.org/10.1111/j.1751-1097.1997.tb03188.x DOI
Roenneberg, T., Kumar, C.J., & Merrow, M. (2007). The human circadian clock entrains to sun time. Current Biology, 17, R44-R45. https://doi.org/10.1016/j.cub.2006.12.011 DOI
Roenneberg, T., Kantermann, T., Juda, M., Vetter, C., & Allebrandt, K.V. (2013). Light and the human circadian clock. Handbook of Experimental Pharmacology, 217, 311‑331. https://doi.org/10.1007/978-3-642-25950-0_13 DOI
Sack, R.L., Lewy, A.J., Erb, D.L., Vollmer, W.M., & Singer, C.M. (1986). Human melatonin production decreases with age. Journal of Pineal Research, 3, 379‑388. https://doi.org/10.1111/j.1600-079x.1986.tb00760.x DOI
Stokkan, K.A., & Reiter, R.J. (1994). Melatonin rhythms in Arctic urban residents. Journal of Pineal Research, 16, 33‑36. https://doi.org/10.1111/j.1600-079x.1994.tb00079.x DOI
Stothard, E.R., McHill, A.W., Depner, C.M., Birks, B.R., Moehlman, T.M., Ritchie, H.K., Guzzetti, J.R., Chinoy, E.D., LeBourgeois, M.K., Axelsson, J., &Wright, K.P Jr. (2017). Circadian Entrainment to the natural light-dark cycle across seasons and the weekend. Current Biology, 27, 508‑513. http://doi.org/10.1016/j.cub.2016.12.041 DOI
Touitou, Y., Fevre, M., Bogdan, A., Reinberg, A., De Prins, J., Beck, H., & Touitou, C. (1984). Patterns of plasma melatonin with ageing and mental condition: stability of nyctohemeral rhythms and differences in seasonal variations. Acta Endocrinol (Copenh), 106, 145‑151. https://doi.org/10.1530/acta.0.1060145 DOI
Ueno-Towatari, T., Norimatsu, K., Błażejczyk, K., Tokura, H., & Morita, T. (2007). Seasonal variation of melatonin secretion in young females under natural and artificial light conditions in Fukuoka, Japan. Journal of Physiological Anthropology, 26, 209‑215. https://doi.org/10.2114/jpa2.26.209 DOI
Vondrasova, D., Hajek, I., & Illnerova, H. (1997). Exposure to long summer days affects the human melatonin and cortisol rhythms. Brain Res, 759, 166‑170. https://doi.org/10.1016/s0006-8993(97)00358-2 DOI
Wehr, T.A. (1991). The duration of human melatonin secretion and sleep respond to changes in daylength (photoperiod). The Journal of Clinical Endocrinology & Metabolism, 73, 1276‑1280. https://doi.org/10.1210/jcem-73-6-1276 DOI
Wehr, T.A., Moul, D.E., Barbato, G., Giesen, H.A., Seidel, J.A., Baker, C., & Bender, C. (1993). Conservation of photoperiod-responsive mechanisms in humans. American Journal of Physiology, 265, R846-R857. https://doi.org/10.1152/ajpregu.1993.265.4.R846 DOI
Yoneyama, S., Hashimoto, S., & Honma, K. (1999). Seasonal changes of human circadian rhythms in Antarctica. American Journal of Physiology, 277(4), R1091-R1097. https://doi.org/10.1152/ajpregu.1999.277.4.R1091 DOI
Zerbini, G., Winnebeck, E.C., & Merrow, M. (2021). Weekly, seasonal, and chronotype-dependent variation of dim-light melatonin onset. Journal of Pineal Research, 70, e12723. https://doi.org/10.1111/jpi.12723 DOI

Relation:

Przegląd Geograficzny

Volume:

95

Issue:

3

Start page:

225

End page:

235

Detailed Resource Type:

Article

Format:

application/octet-stream

Resource Identifier:

oai:rcin.org.pl:239794 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2023.3.1

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Creative Commons Attribution BY 4.0 license

Terms of use:

Copyright-protected material. [CC BY 4.0] May be used within the scope specified in Creative Commons Attribution BY 4.0 license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund

Access:

Open

Object collections:

Last modified:

Dec 18, 2023

In our library since:

Nov 13, 2023

Number of object content downloads / hits:

117

All available object's versions:

https://rcin.org.pl/igipz/publication/276061

Show description in RDF format:

RDF

Show description in RDFa format:

RDFa

Show description in OAI-PMH format:

OAI-PMH

Objects Similar

×

Citation

Citation style:

This page uses 'cookies'. More information