RCIN and OZwRCIN projects


Title: Rola erozji źródliskowej w inicjacji i rozwoju sieci drenażu = The role of seepage erosion in the initiation and development of drainage system


Mazurek, Małgorzata

Date issued/created:


Resource type:



Przegląd Geograficzny T. 89 z. 1 (2017)



Place of publishing:



24 cm

Type of object:



The ways in which the valley and channel of a river are initiated are closely connected with paths water circulation within a slope system takes, with groundwater as an important morphogenetic factor in the development of those landforms. Being the factor that initiates processes of headward erosion, groundwater outflows have also been recognised since the 1980s as a factor forming relief elements (e.g. Laity, 1983; Laity and Malin, 1985; Howard and McLane, 1988; Baker, 1990; Dunne, 1990; Parker and Higgins, 1990; Nash, 1997; Lamb et al., 2006). The chief goal of the work detailed in this article has thus been to survey research conducted to date on seepage erosion and its role in the development of the headwater sections of river valleys. This has entailed the identification of areas in which seepage erosion has been studied, in the wider world and in Poland. The current state of knowledge on the contribution groundwater outflows make to the formation of a drainage system is also presented. Seepage erosion (Dunne, 1990; Lamb et al., 2006) is a process embracing mechanical and chemical action leading to the loosening, tearing off and carrying away of material from the zone of groundwater exfiltration. One result of groundwater sapping is the development of erosional undercuttings, which undermines the stability of slopes and causes their destruction via mass movement (Higgins, 1984; Laity and Malin, 1985; Baker et al., 1990). As a result of headward erosion, an area of groundwater outflow comes to be associated with a developing spring-head alcove, or an arcuate depression, often with steep slopes separated from the slopes of the initial depression by a distinct knickpoint. Together with slope and fluvial processes, seepage erosion contributes significantly to the development of valley forms in various morphoclimatic zones, including the temperate. The morphology of zones of groundwater outflows in Poland has been examined in the course of spring-hydrological and geomorphological studies. For example, the upper Parsęta basin features 88 river channels identified as having morphological features characteristic of an erosional effect of groundwater outflows (Mazurek, 2010). The spring-head alcoves predominating here are arcuate or paraboloid in shape and poorly branched (Photo 1; Mazurek, 2006, 2010; Mazurek and Paluszkiewicz, 2013). Reliefforming processes found to occur in these are: 1. seepage erosion, 2. mass movement, 3. wash, 4. geochemical processes, 5. biogenic processes, and 6. human impact (Mazurek, 2010, Plate 2, Fig. 1). The slopes of the alcoves develop by progressive headward retreat as a result of repeated episodes of sub-slope seepage erosion and gravity-induced mass movement. This sequence of processes keeps alcove slopes steep and leads to the formation of a concave section at the foot of the slope that passes into a flat erosional bottom. Water exfiltrating onto the alcove bottom under hydrostatic pressure washes out its sediments, thus deepening it uniformly, as is indicated by small differences in the bottom gradient. The share of seepage erosion in the formation of river valleys is still a topical research problem. There has been too little field research into relief-forming effects of groundwater outflows and their interaction with other morphogenetic processes that would corroborate the computer simulations and laboratory experiments conducted. There are also too few data about the intensity of the effects of seepage erosion and the rate of development of spring-head alcoves. Today great opportunities are opened up by the appearance of new research methods and techniques (like geotechnical studies, aerial and land-based laser scanning, and hydrogeological modelling), which allow for a quantitative assessment of headwater processes and the determination of their significance in the development of relief under conditions of advancing change in the climate and water cycle.


1. Abrams D. M., Lobkovsky A.E., Petroff A.P., Straub K.M., McElroy B., Mohrig D.C., Kudrolli A., Rothman D.H., 2009, Growth laws for channel networks incised by groundwater flow, Nature Geoscience, 2, s. 193-196.
https://doi.org/10.1038/ngeo432 -
2. Afelt A., 2012, Transport rumowiska wleczonego ze zlewni źródliskowej (przykład źródlisk Łyny), Inżynieria Ekologiczna, 31, s. 5-16.
3. Aharonson O., Zuber M.T., Rothman D.H., Schorghofer N., Whipple K.X., 2002, Drainage basins and channel incision on Mars, Proceedings of National Academy of Sciences of United States of America, 99, s. 1780-1783.
https://doi.org/10.1073/pnas.261704198 -
4. Ahnert F., 1998, Introduction to Geomorphology, Arnold, London.
5. Baker V.R., 1990, Spring sapping and valley network development, with case study by Kochel R.C., Baker V.R., Laity J.E., Howard A.D., [w:] C.G. Higgins, D.R. Coates (red.), Groundwater Geomorphology: The Role of Subsurface Water in Earth-surface Processes and Landforms, Geological Society of America, Special Papers, 252, s. 235-290.
6. Banach M., 1977, Rozwój osuwisk na prawym zboczu doliny Wisły między Dobrzyniem a Włocławkiem, Prace Geograficzne, IG PAN, 124.
7. Baścik M., Partyka J., 2011, Wody na Wyżynach Olkuskiej i Miechowskiej, zlewnie Prądnika, Dłubni i Szreniawy, Instytut Geografii i Gospodarki Przestrzennej, Ojcowski Park Narodowy, Kraków-Ojców.
8. Baumgart-Kotarba M., 1983, Kształtowanie koryt i teras rzecznych w warunkach zróżnicowanych ruchów tektonicznych (na przykładzie wschodniego Podhala), Prace Geograficzne, IGiPZ PAN, 145.
9. Bernatek A., 2014, Rola sufozji w rozwoju rzeźby – stan i perspektywy badań, Przegląd Geograficzny, 86, 1, s. 53-76.
https://doi.org/10.7163/PrzG.2014.1.4 -
10. Beven K.J., 1986, Hillslope runoff processes and flood frequency characteristics, [w:] A.D. Abrahams (red.), Hillslope Processes, Allen & Unwin, Boston, s. 187-202.
11. Bryan R.B., Jones J.A.A., 1997, The significance of soil piping processes: inventory and prospect, Geomorphology, 20, s. 209-218.
https://doi.org/10.1016/S0169-555X(97)00024-X -
12. Bujwid H., Muchowski J., 1973, Rola naturalnego drenażu wód podziemnych w rozwoju morfologicznym krawędzi dolin rzecznych na przykładzie wybranych odcinków dolin Wisły i dolnej Bugo-Narwi, Przegląd Geologiczny, 7, s. 396-400.
13. Bull L.J., Kirkby M.J., 1997, Gully processes and modelling, Progress in Physical Geography, 21, 3, s. 354-374.
https://doi.org/10.1177/030913339702100302 -
14. Bull L.J., Kirkby M.J., 2002, Channel heads and channel extension, [w:] L.J. Bull, M.J. Kirkby (red.), Drylands Rivers: Hydrology and Geomorphology of Semi-arid Channels, John Wiley, Chichester, s. 263-297.
15. Chełmicki W. (red.), 2001, Źródła Wyżyny Krakowsko-Wieluńskiej i Miechowskiej: zmiany w latach 1973-2000, Uniwersytet Jagielloński, Instytut Geografii i Gospodarki Przestrzennej, Kraków.
16. Chu-Agor M.L., Fox G.A., Cancienne R.M., Wilson G.V., 2008, Seepage caused tension failures and erosion undercutting of hillslopes, Journal of Hydrology, 359, s. 247-259.
https://doi.org/10.1016/j.jhydrol.2008.07.005 -
17. Churska Z., 1965, Późnoglacjalne formy denudacyjne na zboczach pradoliny Noteci-Warty i doliny Drwęcy, Studia Societatis Scientiarum Torunensis, Sectio C, Geographia et Geologia, 6.
18. Dawidek J., Turczyński M., 2001, Źródła w małych wyżynnych zlewniach lewobrzeżnej części dorzecza Bugu, [w:] Z. Michalczyk (red.), Źródła Wyżyny Lubelskiej i Roztocza, Badania Hydrograficzne w Poznaniu Środowiska, 6, Wydawnictwo UMCS, Lublin, s. 162-175.
19. de Vries J.J., 1976, The grundwater outcrop-erosion model; evolution of the stream network in the Netherlands, Journal of Hydrology, 29, s. 43-50.
https://doi.org/10.1016/0022-1694(76)90004-4 -
20. Dietrich W.E., Dunne T., 1993, The channel head, [w:] K. Beven, M.J. Kirkby (red.), Channel Network Hydrology, John Wiley, Chichester, s. 175-219.
21. Dietrich W.E., Wilson C.J., Reneau S.L., 1986, Hollows, colluvium and landslides in soilmantled landscapes, [w:] A. Abrahams (red.), Hillslope Processes, Sixteenth Annual Geomorphology Symposium, Allen&Unwin, Boston, s. 361-388.
22. Dunne T., 1980, Formation and controls of channel networks, Progress in Physical Geography, 4, s. 211-239.
https://doi.org/10.1177/030913338000400204 -
23. Dunne T., 1990, Hydrology, mechanics and geomorphic implications of erosion by subsurface flow, [w:] C.G. Higgins, D.R. Coates (red.), Groundwater Geomorphology: The Role of Subsurface Water in Earth-surface Processes and Landforms, Geological Society of America, Special Papers, 252, s. 1-28.
24. Dynowska I., 1983, Źródła Wyżyny Krakowsko-Wieluńskiej i Miechowskiej, Studia Ośrodka Dokumentacji Fizjograficznej, 11, PAN O. w Krakowie, Zakład Narodowy im. Ossolińskich.
25. Fenneman N.M., 1923, Physiographic provinces and sections in western Oklahoma and adjacent parts of Texas, US Geological Bulletin, 730, s. 115-134.
26. Florek W., Pasamonik I., Szyca K., 2014, Chemizm wód źródła w Poddąbiu na tle cech środowiska i morfologii niszy źródliskowej, Słupskie Prace Geograficzne, 11, s . 15-32.
27. Fox G.A., Chu-Agor M., Wilson G.V., 2007, Erosion of noncohesive sediment by groundwater seepage flow: experiments and numerical modeling, Soil Science Society of America Journal, 71, 6, s. 1822-1830.
https://doi.org/10.2136/sssaj2007.0090 -
28. Fox G.A., Wilson G.V., Periketi R.K., Cullum B.F., 2006, A sediment transport model for seepage erosion of streambanks, Journal of Hydrologic Engineering – ASCE, 11, 6, s. 603-611.
https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(603) -
29. Gomez B., Mullen V.T., 1992, An experimental study of sapped drainage network development, Earth Surface Processes and Landforms, 17, s. 465-476.
https://doi.org/10.1002/esp.3290170506 -
30. Gulick V.C., 2001, Origin of the valley networks on Mars: A hydrological perspective, Geomorphology, 37, 3-4, s. 241-268.
31. Higgins C.G., 1982, Drainage systems developed by sapping on Earth and Mars, Geology, 10, s. 147-152.
https://doi.org/10.1130/0091-7613(1982)10<147:DSDBSO>2.0.CO;2 -
32. Higgins C.G., 1984, Piping and sapping: Development of landforms by groundwater outflow, [w:] R.G. LaFluer (red.), Groundwater as a Geomorphic Agent, Allen & Unwin, Boston, s. 18-58.
33. Higgins C.G., Coates D.R. (red.), 1990, Groundwater Geomorphology: The Role of Subsurface Water in Earth-Surface Processes and Landforms, Geological Society of America, Special Papers, 252.
34. Hinds N.E.A., 1925, Amphitheatre valley heads, Journal of Geology, 33, s. 816-918.
https://doi.org/10.1086/623262 -
35. Hoke G.D., Isacks B.L., Jordan T.E., Yu J.S., 2004, Groundwater-sapping origin for the giant quebradas of northern Chile, Geology, 32, 7, s. 605-608.
https://doi.org/10.1130/G20601.1 -
36. Horton R.E., 1945, Erosional development of streams and their drainage basins: a hydrophysical approach to quantitative morphology, Bulletin of the Geological Society of America, 56, s. 275-370.
https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2 -
37. Howard A.D., Kochel R.C., 1988, Introduction to cuesta landforms and sapping processes on the Colorado Plateau, in Sapping Features of the Colorado Plateau, [w:] A.D. Howard, R.C. Kochel, H.E. Holt (red.), Sapping Features of the Colorado Plateau. A Comparative Planetary Geology Field Guide, Washington, D.C., NASA Special Publication, 491, s. 6-56.
38. Howard A.D., McLane C.F., 1988, Erosion of cohesionless sediment by groundwater seepage, Water Resources Research, 24, 10, s. 1659-1674.
https://doi.org/10.1029/WR024i010p01659 -
39. Iverson R.M., Major J.J., 1986, Groundwater seepage vectors and the potential for hillslope failure and debris flow mobilization, Water Resources Research, 22, 11, s. 1543-1548.
https://doi.org/10.1029/WR022i011p01543 -
40. Jaroszewski W., Marks L., Radomski A., 1985, Słownik geologii dynamicznej, Wydawnictwo Geologiczne, Warszawa.
41. Jekatierynczuk-Rudczyk E., 2002, Hydrologiczna specyfika nizinnych wypływów wód podziemnych, [w:] XXX Szkoła Współczesne zagadnienia hydrologii, Mądralin 13-17 maja 2002 roku, Warszawa, s. 133-140.
42. Jekatierynczuk-Rudczyk E., 2004, Stan wybranych źródlisk na obszarach chronionych regionu białostockiego, [w:] Z Michalczyk (red.), Badania geograficzne w poznawaniu środowiska, Wydawnictwo UMCS, Lublin, s. 296-300.
43. Jones J.A.A., 1987, The initiation of natural drainage networks, Progress in Physical Geography, 11, s. 207-245.
https://doi.org/10.1177/030913338701100203 -
44. Jones J.A.A., 1997, Subsurface flow and subsurface erosion, further evidence on forms and controls, [w:] D.R. Stoddart (red.), Process and Form in Geomorpholo gy, Routledge, London, s. 74-120.
45. Jones J.A.A., 2004, Pipe and piping, [w:] A. Goudie (red.), Encyclopedia of Geomorphology, Routledge, London, s. 784-788.
46. Kendall P.F., Wroot H.E., 1924, The Geology of Yorkshire, Vienna.
47. Kirkby M.J., Chorley R.J., 1967, Throughflow, overland flow, and erosion, International Association of Scientific Hydrology Bulletin, 12, s. 5-21.
https://doi.org/10.1080/02626666709493533 -
48. Klimaszewski M., 1981, Geomorfologia, PWN, Warszawa.
49. Knighton A.D., 1998, Fluvial Forms and Processes: A New Perspective, Edward Arnold, London.
50. Kobendzina J., 1949, Źródliska rzeki Łyny, Chrońmy Przyrodę Ojczystą, 4-5-6, s. 62-66.
51. Koc J., Glińska-Lewczuk K., 2004, Hydrochemiczna charakterystyka wód źródlanych obszaru młodoglacjalnego na przykładzie źródlisk Łyny, Journal of Elementology, 9, 1, s. 25-34.
52. Kochel R.C., Howard A D., McLane C. F., 1985, Channel networks developed by groundwater sapping in fine-grained sediments: Analogs to some Martian valleys, [w:] M.J. Woldenberg (red.), Models in Geomorphology, Allen & Unwin, Boston, s. 313-341.
53. Kochel R.C., Piper J.F., 1986, Morphology of large valleys on Hawaii – evidence for groundwater sapping and comparisons with Martian valleys, Journal of Geophysical Research-Solid Earth and Planets, 91, B13, E175-E192.
https://doi.org/10.1029/JB091iB13p0E175 -
54. Kochel R.C., Simmons D.W., Piper J.F., 1988, Ground-water sapping experiments in weakly consolidated layered sediments. A qualitative summary, [w:] A.D. Howard (red.), NASA Special Publication, 491, s. 84-93.
55. Kostrzewski A., Zwoliński Zb., 1988, Morphodynamics of the cliffed coast, Wolin Island, Geographia Polonica, 55, s. 69-81.
56. Kowalski S., 1980, Charakterystyka hydrogeologiczna źródeł Gór Stołowych, Kwartalnik Geologiczny, 24, 4, s. 885-904.
57. Krzemiński T., 1989, Powiązanie form dolinnych środkowej Polski z obiegiem wody w małych zlewniach, Acta Geographica Lodziensia, 59, s. 95-119.
58. Lacelle D., Bjornson J., Lauriol B., 2010, Climatic and geomorphic factors affecting contemporary (1950-2004) activity of retrogressive thaw slumps on the Aklavik Plateau, Richardson Mountains, NWT, Canada, Permafrost and Periglacial Processes, 21, s. 1-15.
https://doi.org/10.1002/ppp.666 -
59. LaFleur R.G. (red.), 1984, Groundwater as a Geomorphic Agent, Allen & Unwin, Boston.
60. LaFleur R.G., 1999, Geomorphic Aspects of Groundwater Flow, Journal of Hydrogeology, 7, s. 78-93.
https://doi.org/10.1007/s100400050181 -
61. Laity J. E., 1980, Sapping processes in Martian and terrestrial valleys, EOS, Transactions American Geophysical Union, 61, 17, s. 286-287.
62. Laity J.E., 1983, Diagenetic controls on groundwater sapping and valley formation, Colorado Plateau, revealed by optical and electron microscopy, Physical Geography, 4, 2, s. 103-125.
64. Laity J.M., Malin M.C., 1985, Sapping processes and the development of theater-headed valley networks in the Colorado Plateau, Bulletin of the Geological Society of America, 94, 2, s. 203-217.
https://doi.org/10.1130/0016-7606(1985)96<203:SPATDO>2.0.CO;2 -
65. Lamb M.P., Dietrich W.E., Aciego S.M., DePaolo D.J., Manga M., 2008, Formation of Box Canyon, Idaho, by megaflood: Implications for seepage erosion on Earth and Mars, Science, 320, s. 1067-1070.
https://doi.org/10.1126/science.1156630 -
66. Lamb M.P., Howard A.D., Dietrich W.E., Perron J.T., 2007, Formation of amphitheater--headed valleys by waterfall erosion after large-scale slumping on Hawaii, GSA Bulletin, 19, s. 805-822.
https://doi.org/10.1130/B25986.1 -
67. Lamb M.P., Howard A.D., Johnson J., Whipple K.X., Dietrich W.E., Perron J.T., 2006, Can springs cut canyons into rock?, Journal of Geophysical Research (Planets), 111 (E07002), doi:10.1029/2005JE002663.
https://doi.org/10.1029/2005JE002663 -
68. Lobkovsky A. E., Jensen B., Kudrolli A., Rothman D.H., 2004, Threshold phenomena in erosion driven by subsurface fl ow, Journal of Geophysical Research-Earth Surface, 109, F4, F04010.
69. Luo W., Arvidson R.E., Sultan M., Becker R., Crombie M.K., Sturchio N., Alfy Z.E., 1997, Groundwater sapping processes, Western Desert, Egypt, Geological Society of America Bulletin, 109, 1, s. 43-62.
https://doi.org/10.1130/0016-7606(1997)109<0043:GWSPWD>2.3.CO;2 -
70. Malin M.C., Carr M.H., 1999, Groundwater formation of Martian valleys, Nature, 397 (6720), s. 589-591.
https://doi.org/10.1038/17551 -
71. Malin M.C., Edgett K., 2000, Evidence for recent groundwater seepage and surface runoff on Mars, Science, 288, s. 2330-2335.
https://doi.org/10.1126/science.288.5475.2330 -
72. Marra W.A., McLelland S.J., Parsons D.R., Murphy B.J., Hauber E., Kleinhans M.G., 2015, Groundwater seepage landscapes from distant and local sources in experiments and on Mars, Earth Surface Dynamics, 3, s. 389-408.
https://doi.org/10.5194/esurf-3-389-2015 -
73. Maruszczak H., 1996, Hydrogeologiczne warunki rozwoju martwic wapiennych w NW części Wyżyny Lubelskiej (Polska SE), Annales UMCS, Lublin, 51 (14 B), s. 197-217.
74. Mastronuzzi G., Sansò P., 2002, Pleistocene sea-level changes, sapping processes and development of Valley networks In the Apulia region (southern Italy), Geomorphology, 46, s. 19-34.
https://doi.org/10.1016/S0169-555X(01)00172-6 -
75. Mazurek M., 2006, Morphometric differences in channel heads in a postglacial zone (Parsęta catchment, West Pomerania), Questiones Geographicae, 25A, s. 39-47.
76. Mazurek M., 2008, Czynniki kształtujące skład chemiczny wypływów wód podziemnych w południowej części dorzecza Parsęty (Pomorze Zachodnie), Przegląd Geologiczny, 56, 2, s. 131-139.
77. Mazurek M., 2010, Hydrogeomorfologia obszarów źródliskowych (dorzecze Parsęty, Polska NW), Seria Geografia, 92, Wydawnictwo Naukowe UAM, Poznań.
78. Mazurek M., 2011, Geomorphological processes in channel heads initiated by groundwater outflows (the Parsęta catchment, north-western Poland), Quaestiones Geographicae, 30, 3, s. 33-45.
https://doi.org/10.2478/v10117-011-0025-x -
79. Mazurek M., Paluszkiewicz R., 2013, Formation and development of a 1st-order valley network in postglacial areas (the Dębnica catchment), Landform Analysis, 22, s. 75-87.
https://doi.org/10.12657/landfana.022.006 -
80. McNamara J.P., Ziegler A.D., Wood S.H., Vogler J.B., 2006, Channel head locations with respect to geomorphologic thresholds derived from a digital elevation model: A case study in northern Thailand, Forest Ecology and Management, 224, s. 147-156.
https://doi.org/10.1016/j.foreco.2005.12.014 -
81. Michalska M., 1979, Wody podziemne utworów czwartorzędowych w młodoglacjalnej strefie marginalnej okolic Miastka na Pojezierzu Pomorskim, Wydział Geologii UW, maszynopis powielony.
82. Michalczyk Z. (red.), 1996, Źródła Roztocza. Monografia hydrograficzna, Wydawnictwo UMCS, Lublin.
83. Michalczyk Z. (red.), 2001, Źródła Wyżyny Lubelskiej i Roztocza, Wydawnictwo UMCS, Lublin.
84. Migoń P., Kasprzak M., 2016, Pathways of geomorphic evolution of sandstone escarpments in the Góry Stołowe tableland (SW Poland) – Insights from LiDAR-based high-resolution DEM, Geomorphology, 260, s. 51-63.
https://doi.org/10.1016/j.geomorph.2015.08.022 -
85. Migoń P., 2006, Geomorfologia, PWN, Warszawa.
86. Migoń P., Szczepanik M., 2005, Amfiteatry skalne północno-wschodniego progu Gór Stołowych, Szczeliniec, 9, s. 5-18.
87. Migoń P., Zwiernik M., 2006, Strukturalne uwarunkowania rzeźby północno-wschodniego progu Gór Stołowych, Przegląd Geograficzny, 78, 3, s. 319-338.
88. Miklas M., Moniewski S., 2002, Warunki rozwoju oraz zagrożenia nisz źródłowych na przykładzie wybranych źródeł ze strefy krawędziowej Wzniesień Łódzkich, [w:] T. Ciupa, E. Kupczyk, R. Suligowski (red.), Obieg wody w zmieniającym się środowisku, Prace Instytutu Geografii AŚ w Kielcach, 7, s. 53-62.
89. Moniewski S., 2004, Źródła okolic Łodzi, Acta Geographica Lodziensia, 87, Łódź.
90. Montgomery D.R., Dietrich W.E., 1989, Source areas, drainage density and channel initiation, Water Resources Research, 25, s. 1907-1918.
https://doi.org/10.1029/WR025i008p01907 -
91. Muchowski J., 1977, Młode wcięcia erozyjne południowej strefy krawędziowej Wyżyny Lubelskiej ich geneza, wiek i dynamika rozwoju, Biuletyn Geologiczny, 22, s. 117-154.
92. Nash D.J., 1996, Groundwater sapping and valley development in the Hackness Hills, North Yorkshire, England, Earth Surface Processes and Landforms, 21, s. 781-795.
https://doi.org/10.1002/(SICI)1096-9837(199609)21:9<781::AID-ESP616>3.0.CO;2-O -
93. Nash D.J., 1997, Groundwater as a geomorphological agent in drylands, [w:] D.S.G. Thomas (red.), Arid Zone Geomorphology: Process, Form and Change in Drylands, Wiley and Sons, London, s. 319-348.
94. Nowakowski Cz., 1975, Hydrogeologia źródeł strefy czołowo-morenowej Pojezierza Suwalskiego, Wydział Geologii UW, Warszawa, maszynopis powielony.
95. Oberlander T., 1965, The Zagros Streams: A New Interpretation of Transverse Drainage in an Orogenic Zone, Syracuse Geographical Series, 1, Syracuse University Press, New York
96. Onda Y., 1994, Seepage erosion and its implication to the formation of amphitheatre valley heads: a case study at Obara, Japan, Earth Surface Processes and Landforms, 19, s. 627-640.
https://doi.org/10.1002/esp.3290190704 -
97. Orange D.L., Anderson R.S., Breen N.A., 1994, Regular canyon spacing in the submarine environment: The link between hydrology and geomorphology, GSA Today, 4, s. 1-39.
98. Parker G.G., Sr., Higgins Ch.G., 1990, Piping and pseudokarst in drylands, [w:] C.G. Higgins, D.R. Coates (red.), Ground Water Geomorphology: The Role of Subsurface Water in Earth-surface Processes and Landforms, Geological Society of America, Special Papers, 252, s. 77-110.
99. Paull C.K., Spiess F.N., Curray J.R., Twichell D.C., 1990, Origin of Florida Canyon and the role of spring sapping on the formation of submarine box canyons, Geological Society of America Bulletin, 102, s. 502-515.
https://doi.org/10.1130/0016-7606(1990)102<0502:OOFCAT>2.3.CO;2 -
100. Pornprommin A., Izumi N., 2008, Experimental study of channelization by seepage erosion, Journal of Applied Mechanics, 11, s. 709-717.
https://doi.org/10.2208/journalam.11.709 -
101. Pulinowa M., 1989, Rzeźba Gór Stołowych, Prace Naukowe UŚ, 1008, Wydawnictwo Uniwersytetu Śląskiego, Katowice.
102. Russel I.C., 1902, Geology and Water Resources of the Snake River Plains of Idaho, United States Geological Survey Bulletin, 199.
103. Schorghofer N., Jensen W., Kudrolli A., Rothman D.H., 2004, Spontaneous channelization in permeable ground: theory, experiment, and observation, Journal of Fluid Mechanics, 503, s. 357-374.
https://doi.org/10.1017/S0022112004007931 -
104. Schumm S.A., Boyd K.F., Wolff C.G., Spitz W.J., 1995, A ground-water sapping landscape in the Florida Panhandle, Geomorphology, 12, s. 281-297.
https://doi.org/10.1016/0169-555X(95)00011-S -
105. Schumm S.A., Phillips L., 1986, Composite channels of the Canterbury Plain, New Zealand: A Martin analog?, Geology, 14, s. 326-329.
https://doi.org/10.1130/0091-7613(1986)14<326:CCOTCP>2.0.CO;2 -
106. Sinkiewicz M., 1994, Paleogeograficzna wymowa budowy stożków napływowych w okolicy Biskupina na Pojezierzu Gnieźnieńskim, Acta Universitatis Nicolai Copernici, 92, s. 35-57.
107. Small R. G., Lewin J., 1965, The role of spring sapping in the formation of Chalk escarpment valleys, Southampton University Research, Geography, 1, s. 3-29.
108. Smith B., Kudrolli A., Lobkovsky A. E., Rothman D. H., 2008, Channel erosion due to subsurface flow, Chaos, 18, doi: 10.1063/1.2997333, http://link.aip.org/link/?CHAOEH/18/041105/1
https://doi.org/10.1063/1.2997333 -
109. Solger F., 1931, Der Boden Niederdeutschlands nach seiner letzten Vereisung, Reimer Verlag, Berlin.
110. Spence Ch.D., Sauchyn D.J., 1999, The groundwater geomorphology of valley heads, upper Battle Creek basin, Albert and Saskatchewan, [w:] D.S. Lemmen, R.E. Vance (red.), Holocene Climate and Environmental Change in the Palliser Triangle, Southern Canadian Prairies, Bulletin of the Geological Survey of Canada, 534.
111. Stach A., 2003, Uwarunkowania i funkcjonowanie procesów denudacji chemicznej mikrozlewni na obszarze młodoglacjalnym i ich wpływ na morfodynamikę stoków (zlewnia górnej Parsęty, Pomorze Zachodnie), Wydawnictwo Naukowe UAM, Poznań.
112. Stepinski T.F., Coradetti S., 2004, Comparing morphologies of drainage basins on Mars and Earth using integral-geometry and neural maps, Geophysical Research Letters, 31, L15604, doi:10.1029/2004GL020359.
https://doi.org/10.1029/2004GL020359 -
113. Tanaka K.L., Dohm J.M., Lias J.H., Hare T.M., 1998, Erosional valleys in the Thaumasia region of Mars: Hydrothermal and seismic origins, Journal of Geophysical Research, 103, 31, s. 407-420.
https://doi.org/10.1029/98je01599 -
114. Tomaszewski J., 1977, Charakterystyka krenologiczna masywu krystalicznego na przykładzie Karkonoszy, Acta Universitatis Wratislaviensis, Studia Geograficzne, 28.
115. Uchupi E., Oldale R. N., 1994, Spring sapping origin of the enigmatic relict valleys of Cape Cod and Martha's Vineyard and Nantucket Islands, Massachusetts, Geomorphology, 9, 2, s. 83-95.
https://doi.org/10.1016/0169-555X(94)90068-X -
116. Verachtert E., Van Den Eeckhaut M., Poesen J., Deckers J., 2010, Factors controlling the spatial distribution of soil piping erosion on loess-derived soils: A case study from central Belgium, Geomorphology, 118, s. 339-348.
https://doi.org/10.1016/j.geomorph.2010.02.001 -
117. Virtual Karak Resources Project http://www.vkrp.org/studies/environmental/hydrological--processes/info/climate.asp (1.08.2016).
118. Waksmundzki K., 1971, Typologia naturalnych wypływów wody podziemnej w górskich obszarach fliszowych, Przegląd Geograficzny, 43, 3, s. 381-390.
119. Wilson G.V., Periketi R.K., Fox G.A., Dabney S.M., Shields F.D., Cullum R.F., 2007, Seepage erosion properties contributing to streambank failure, Earth Surface Processes and Landforms, 32, s. 447-459.
https://doi.org/10.1002/esp.1405 -
120. Wistuba M., 2014, Slope-Channel Coupling as a Factor in the Evolution of Mountains. The Western Carpathians and Sudetes, Springer, Cham-Heidelberg-New York-Dordrecht-London.
121. Wrońska D., 2006, Wykształcenie i funkcjonowanie lejów źródliskowych potoków gorczańskich, Ochrona Beskidów Zachodnich, 1, s. 113-120.
122. Wrońska-Wałach D., Płaczkowska E., Krzemień K., 2013, Leje źródłowe jako systemy morfodynamiczne w obszarach górskich, Przegląd Geograficzny, 85, 1, s. 31-51.
https://doi.org/10.7163/PrzG.2013.1.3 -
123. Zwoliński Zb., 1988, Metody badań erozji bocznej w korytach rzecznych: przegląd i zastosowane techniki na Parsęcie, Badania Fizjograficzne nad Polską Zachodnią, 38, s. 179-212.


Przegląd Geograficzny





Start page:


End page:


Detailed Resource Type:



File size 4,4 MB ; application/pdf

Resource Identifier:

oai:rcin.org.pl:61803 ; 0033-2143 (print) ; 2300-8466 (on-line) ; 10.7163/PrzG.2017.1.5


CBGiOS. IGiPZ PAN, sygn.: Cz.181, Cz.3136, Cz.4187 ; click here to follow the link



Language of abstract:



Creative Commons Attribution BY 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure ; European Union. European Regional Development Fund



Object collections:

Last modified:

Mar 25, 2021

In our library since:

Mar 9, 2017

Number of object content downloads / hits:


All available object's versions:


Show description in RDF format:


Show description in RDFa format:


Show description in OAI-PMH format:




Citation style:

This page uses 'cookies'. More information