Projekty RCIN i OZwRCIN


Tytuł: Regional features of the bioclimate of Central and Southern Europe against the background of the Köppen-Geiger climate classification

Inny tytuł:

Geographia Polonica Vol. 88 No. 3 (2015)



Miejsce wydania:



24 cm

Typ obiektu:



Climate Index UTCI to studies of regional variability in human-biometeorological conditions. The variability in question was assessed by reference to selected meteorological stations representing Central and Southern Europe, i.e. Kołobrzeg, Warsaw and Świeradów (in Poland), Prague, Budapest, Ljubljana, Milan, Rome and Athens, with the bioclimatic features characterising these localities being presented against the background of the Köppen-Geiger climate classification. In line with that classification, the first five stations are found to represent the cold climate zones (Dfb, Dfc). The last four stations are in turn located in the temperate climate zones (Cfa, Cfb, Csa). Seasonal changes in UTCI values and the frequency of occurrence of UTCI categories are discussed. Significant regional differences in bioclimatic characteristics were found between the stations representing various types of climate. While the highest summer values for UTCI are very similar at all stations (39-42°C), the frequency of occurrence of days with at least strong heat stress (SHS) varied from 2% at the coastal station of Kołobrzeg in Poland to more than 50% at the Milan, Rome and Athens stations. In winter the lowest UTCI values are much differentiated regionally, from -54°C at the mountain station in Świeradów, Poland, to -22°C in Rome. In the zone of cold climate, the frequency of occurrence of days with at least strong cold stress (SCS) is >40%, while in the temperate climates, strong cold stress is characteristic of less than 2% of winter days.


1. Błażejczyk K., 1994. New climatological-and--physiological model of the human heat balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. Zeszyty IGiPZ PAN, vol. 28, pp. 27-58.
2. Błażejczyk K., 2004. Radiation balance in man in various meteorological and geographical conditions. Geographia Polonica, vol. 77, no. 1, pp. 63-76.
3. Błażejczyk K., 2005. Radiation balance of different segments of the human body. DWD, Annalen der Meteorologie, vol. 41, no. 1, pp. 313-316.
4. Błażejczyk K., 2006. Climate and bioclimate of Poland [in:] M. Degórski (ed.), Natural and human environment of Poland. A geographical overview, Warsaw: Polish Academy of Sciences Institute of Geography and Spatial Organization, Polish Geographical Society, pp. 31-48.
5. Błażejczyk K., Bröde P., Fiala D., Havenith G., Holmér I., Jendritzky G., Kampmann B., Kunert A., 2010. Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale. Miscellanea Geographica, vol. 14, pp. 91-102.
6. Błażejczyk K., Epstein Y., Jendritzky G., Staiger H., Tinz B., 2012. Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, vol. 56, no. 3, pp. 515-535.
7. Błażejczyk K., Kozłowska-Szczęsna T., Krawczyk B., 1994. Recent bioclimatological studies in Poland. Geographia Polonica, vol. 63, pp. 37-49.
8. Błażejczyk K., Matzarakis A., 2007. Assessment of bioclimatic differentiation of Poland based on the human heat balance. Geographia Polonica, vol. 80, no. 1, pp. 63-82.
9. Błażejczyk K., Kunert A., 2010. Warunki bioklimatyczne wybranych aglomeracji Europy i Polski [in:] E. Bednorz, L. Kolendowicz (eds.), Klimat Polski na tle klimatu Europy. Zmiany i ich konsekwencje, Poznań: Bogucki Wyd. Naukowe, pp. 93-106.
10. Bröde P., Fiala D., Błażejczyk K., Holmér I., Jendritzky G., Kampmann B., Tinz B., Havenith G., 2012. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, vol. 56, no. 3, pp. 481-494.
11. Bröde P., Krüger E.L., Fiala D., 2013. UTCI: validation and the practical application to the assessment of urban outdoor thermal comfort. Geographia Polonica, vol. 86, no. 1, pp. 11-20.
12. CEGNAR T., MATZARAKIS A., 2004. Trends of thermal bioclimate and their application for tourism in Slovenia [in]: A. Matzarakis, C.R. de Freitas, D. Scott (eds.), Advances in Tourism Climatology, vol. 12, Freiburg: Berichte des Meteorologischen Institutes der Universität Freiburg, pp. 66-73.
13. Clark R.P., Edholm O.G., 1985. Man and his thermal environment. London: E. Arnold Ltd.
14. Epstein Y., Moran D.S., 2006. Thermal comfort and heat stress indices. Industrial Health, vol. 44, no. 3, pp. 388-398.
15. Fiala D., Havenith G., Bröde P., Kampmann B., Jendritzky G., 2012. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. International Journal of Biometeorology, vol. 56, no. 3, pp. 429-441.
16. Fiala D., Lomas K.J., Stohrer M., 1999. A computer model of human thermoregulation for a wide range of environmental conditions: The passive system. Journal of Applied Physiology, vol. 87, no. 5, pp. 1957-1972.
17. Fiala D., Lomas K.J., Stohrer M., 2001. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. International Journal of Biometeorology, vol. 45, no. 3, pp. 143-159.
19. Gulyás A., Matzarakis A., 2009. Seasonal and spatial distribution of physiologically equivalent temperature (PET) index in Hungary. IDŐJÁRÁS, vol. 113, no. 3, pp. 221-231.
20. Havenith G., 2001. An individual model of human thermoregulation for the simulation of heat stress response. Journal of Applied Physiology, vol. 90, no. 5, pp. 1943-1954.
21. Hensel H., 1981. Thermoreception and temperature regulation. London: Academic Press.
22. Höppe P., 1984. Die Energiebilanz des Menschen. München: Meteorologische Institut München, Universität, Wissenschaftliche Mitteilungen.
23. Huizenga C., Zhang H., Arens E., 2001. A model of human physiology and comfort for assessing complex thermal environments. Building and Environment, vol. 36, no. 6, pp. 691-699.
24. IDZIKOWSKA D., 2010. Differences in bioclimatic conditions in four European cities: Budapest, Paris, Rome and Warsaw [in:] A. Matzarakis, H. Mayer, F.-M. Chmielewski (eds.), Proceedings of the 7th Conference on Biometeorology, Albert-Ludwigs-University of Freiburg, Germany, 12-14 April 2010, Berichte des Meteorologischen Institutes der Universität Freiburg, vol. 20, pp. 201-206.
25. IUPS, 2003. Glossary of terms for thermal physiology, 3rd edition revised by the Commission for Thermal Physiology of the International Union of Physiological Sciences. Journal of Thermal Biology, vol. 28, no. 1, pp. 75-106.
26. Jendritzky G., 1990. Bioklimatische Bewertungsgrundlage der Räume am Beispiel von mesoskaligen Bioklimakarten [in:] H. Schirmer (ed.), Methodik zur räumlichen Bewertung der thermischen Komponente im Bioklima des Menschen, vol. 114, Hannover: Akademie für Raumforschung und Landesplanung, pp. 7-69.
27. Jendritzky G., De Dear R., Havenith G., 2012. UTCI – Why another thermal index? International Journal of Biometeorology, vol. 56, no. 3, pp. 421-428.
28. JENDRITZKY G., STAIGER H., BUCHER K., GRAETZ A., LASCHEWSKI G., 2011. The Perceived Temperature: The Method of the Deutscher Wetterdienst for the Assessment of Cold Stress and Heat Load for the Human Body. Deutscher Wetterdienst, [5 January 2015].
29. JENDRITZKY G., TINZ B., 2009. The thermal environment of the human being on the global scale. Global Health Action, vol. 2, 10.3402/gha.v2i0.2005.
30. Jylha K., Tuomenvirta H., Ruosteenoja K., Niemi-Hugaerts H., Keisu K., Karhu J.A., 2010. Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather, Climate and Society, vol. 2, no. 2, pp. 148-167.
31. KÖPPEN W., 1884. Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorolische Zeitschrift, vol. 1, pp. 215-226, translated and edited by E. Volken, S. Brönnimann, 2011, The thermal zones of the Earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world, Meteorolische Zeitschrift, vol. 20, no. 3, pp. 351-360.
32. Kottek M., Grieser J., Beck C., Rudolf B., Rubel F., 2006. World Map of the Köppen-Geiger climate classification updated. Meteorolische Zeitschrift, vol. 15, no. 3, pp. 259-263.
33. Kozłowska-Szczęsna T., Krawczyk B., Błażejczyk K., 2004. The main features of bioclimatic conditions at Polish health resorts. Geographia Polonica, vol. 77, no. 1, pp. 45-61.
34. Laschewski G., Jendritzky G., 2002. Effects of the thermal environment on human health: an investigation of 30 years of daily mortality data from SW Germany. Climate Research, vol. 21, no. 1, pp. 91-103.
35. Li P.W., Chan S.T., 2000. Application of a weather stress index for alerting the public to stressful weather in Hong Kong. Meteorological Applications, vol. 7, no. 4, pp. 369-375.
36. Lindner-Cendrowska K., 2013. Assessment of bioclimatic conditions in the cities for tourism and recreational purposes (a Warsaw case study). Geographia Polonica, vol. 86, no. 1, pp. 55-66.
37. Matzarakis A., Georgiadis T., Rossi F., 2007. Thermal bioclimate analysis for Europe and Italy. Il Nuovo Cimento. C, vol. 30, no. 6, pp. 623-632.
38. Matzarakis A., Hämmerle M., Koch E., Rudel E., 2012. The climate tourism potential of Alpine destinations using the example of Sonnblick, Rauris and Salzburg. Theoretical and Applied Climatology, vol. 110, no. 4, pp. 645-658.
39. Matzarakis A., Mayer H., Iziomon M.G., 1999. Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, vol. 43, no. 2, pp. 76-84.
40. Matzarakis A., Mayer H., 1991. The Extreme Heat Wave in Athens in July 1987 from the Point of View of Human Biometeorology. Atmospheric Environment. Part B. Urban Atmosphere, vol. 25, pp. 203-211.
41. Mayer H., Höppe P., 1987. Thermal comfort of man in different urban environments. Theoretical and Applied Climatology, vol. 38, no. 1, pp. 43-49
42. Missenard F.A., 1933, Température effective d'une atmosphere. Généralisation température résultante d'un milieu [in:] Encyclopédie Industrielle et Commerciale, Etude physiologique et technique de la ventilation, Paris: Librerie de l'Enseignement Technique, pp. 131-185.
43. Nemeth A., 2011. Changing thermal bioclimate in some Hungarian cities. Acta Climatologica et Chorologica Universitatis Szegediensis, vol. 44-45, pp. 93-101.
44. Nowosad M., Rodzik B., Wereski S., Dobek M., 2013. The UTCI index in Lesko and Lublin and its circulation determinants. Geographia Polonica, vol. 86, no. 1, pp. 29-36.
45. Parsons K.C., 2003. Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort and performance. London, New York: Taylor & Francis.
46. Peel M.C., Finlayson B.L., Mcmahon T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, vol. 11, no. 5, pp. 1633-1644.
47. PICKUP J., DE DEAR R., 2000. An Outdoor Thermal Comfort Index (OUT_SET*) - Part I - The Model and its Assumptions [in:] R. de Dear, J. Kalma, T. Oke, A. Auliciems (eds.), Biometeorology and Urban Climatology at the Turn of the Millenium, WCASP-50: WMO/TD No. 1026, Geneva: WMO, pp. 279-283.
48. Psikuta A., Fiala D., Laschewski G., Jendritzky G., Richards M., Błażejczyk K., Mekjavič I., Rintamäki H., De Dear R., Havenith G., 2012. Evaluation of the Fiala multi-node thermophysiological model for UTCI application. International Journal of Biometeorology, vol. 56, no. 3, pp. 443-460.
49. Staiger H., Bucher K., Jendritzky G., 1997. Gefühlte Temperatur. Die physiologisch gerechte Bewertung von Wärmebelastung und Kältestress beim Aufenthalt im Freien in der Maßzahl Grad Celsius. DWD Annalen der Meteorologie, vol. 33, pp. 100-107.
50. Staiger H., Laschewski G., Grätz A., 2012. The perceived temperature – a versatile index for the assessment of the human thermal environment. Part A: scientific basics. International Journal of Biometeorology, vol. 56, no. 1, pp. 165-176.
51. Tanabe S.I., Kobayashi K., Nakano J., Ozeki Y., Konishi M., 2002. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy and Buildings, vol. 34, no. 6, pp. 637-646.
52. Zaninovic K., Matzarakis A., 2004. Variation and trends of thermal comfort at the Adriatic coast [in:] A. Matzarakis, C.R. de Freitas, D. Scott (eds.), Advances in Tourism Climatology, vol. 12, Freiburg: Berichte des Meteorologischen Institutes der Universität Freiburg, pp. 74-81.


Geographia Polonica





Strona pocz.:


Strona końc.:


Szczegółowy typ zasobu:



Rozmiar pliku 2,6 MB ; application/pdf

Identyfikator zasobu: ; 0016-7282 ; 10.7163/GPol.0027


CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 ; kliknij tutaj, żeby przejść



Język streszczenia:



Licencja Creative Commons Uznanie autorstwa-Bez utworów zależnych 3.0 Polska

Zasady wykorzystania:

Zasób chroniony prawem autorskim. [CC BY-ND 3.0 PL] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa-Bez utworów zależnych 3.0 Polska, której pełne postanowienia dostępne są pod adresem: ; -


Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk

Lokalizacja oryginału:

Centralna Biblioteka Geografii i Ochrony Środowiska Instytutu Geografii i Przestrzennego Zagospodarowania PAN

Dofinansowane ze środków:

Unia Europejska. Europejski Fundusz Rozwoju Regionalnego ; Program Operacyjny Innowacyjna Gospodarka, lata 2010-2014, Priorytet 2. Infrastruktura strefy B + R



Obiekty Podobne



Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji