Title: Identification of the Rozwarowo marshes using radar remote sensing


Solovey, Tatiana

Date issued/created:


Resource type:



Geographia Polonica Vol. 90 No. 4 (2017)



Place of publishing:



24 cm

Type of object:



The main aim of the work was to develop methods of remote identification of marshes, detection of flooded territories, and classification of plant cover on the basis of data of satellites operating in the optical and microwave spectres in particular. The research is done in 2014 on the territories of the Rozwarowo Marshes nature protected area, located in the north-eastern Poland in the delta of Oder. The backscattering coefficients (°), calculated from Radarsat-2 (Phased Array type C-band Synthetic Aperture Radar) images registered at cross polarization VH on 26 September 2014 were applied for classification of main types of wetland communities. The peculiarities of plant cover are also discovered using Normalized Difference Vegetation Index (NDVI), calculated on the basis satellite image SPOT-6 on September, the 1st, 2014. The differences in the NDVI value within homogeneous segment of plant are caused, first of all by the soil moisture. Close connection between the soil moisture and the NDVI value for the main groups of plant cover is detected. The application of coefficients °VH/°VV, calculated on the basis of radar images at the polarization VH and VV and the big ray angle (above 40°) of incidence are suggested for identification of flooded territories.


1. Arnesen A.S., Silva T.S.F., Hess L.L., Novo E.M.L.M., Rudorff C.M, Chapman B.D., Mcdonald K.C., 2013. Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images. Remote Sensing of Environment, vol. 130, pp. 51-61.
2. Bourgeau-Chavez L.L., Kasischke E.S., Brunzell S.M., Mudd J.P., Smith K.B., Frick A.L., 2001. Analysis of space-borne SAR data for wetland mapping in Virginia riparian ecosystems. International Journal of Remote Sensing, vol. 22, no. 18, pp. 3665-3687.
3. Brisco B., Kapfer M., Hirose T., Tedford B., Liu J., 2011. Evaluation of C-band polarization diversity and polarimetry for wetland mapping. Canadian Journal of Remote Sensing, vol. 37, no. 1, pp. 82-92.
4. Budzyńska M., Dąbrowska-Zielińska K., Turlej K., Małek I., Bartold M., 2011. Monitoring przyrodniczy Bagien Biebrzańskich z zastosowaniem teledetekcji. Woda-Środowisko-Obszary Wiejskie, vol. 11, no. 3, pp. 39-64.
5. Canisius F., Fernandes R., 2012. ALOS PALSAR L-band polarimetric SAR data and in situ measurements for leaf area index assessment. Remote Sensing Letters, vol. 3, no. 3, pp. 221-229.
6. Choiński A., 1998. Warunki obiegu wody w dorzeczu Parsęty [in:] A. Kostrzewski (ed.), Funkcjonowanie geosystemów zlewni rzecznych. Tom 1. Środowisko przyrodnicze dorzecza Parsęty – stan badań, zagospodarowanie, ochrona, Koszalin: Politechnika Koszalińska, pp. 36-51.
7. Costa M.P.F., 2004. Use of SAR satellites for mapping zonation of vegetation communities in the Amazon floodplain. International Journal of Remote Sensing, vol. 25, no. 10, pp. 1817-1835.
8. Costa M.P.F., Moraes Novo E.M.L., Ahern E., Mitsuo Ii E., Mantovani J.E., Ballester M.V., Pietsch R.W., 1998. The Amazon floodplain through radar eyes: Lago Grande de Monte Alegre case study. Canadian Journal of Remote Sensing, vol. 24, no. 4, pp. 339-349.
9. Dabrowska-Zielinska K., Budzynska M., Tomaszewska M., Bartold M., Gatkowska M., Malek I., Turlej K., Napiorkowska M., 2014. Monitoring wetlands ecosystems using ALOS PALSAR (L-Band, HV) supplemented by optical data: A case study of Biebrza Wetlands in Northeast Poland. Remote Sensing, vol. 6, no. 2, pp. 1605-1633.
10. Dobson M.C., Ulaby F.T., Le Toan T., Beaudoin A., Kasischke E.S., Christensen N., 1992. Dependence of radar backscatter on coniferous forest biomass. IEEE Transactions on Geoscience and Remote Sensing, vol. 30, no. 2, pp. 412-415.
11. Dynowska I., 1971. Typy reżimów rzecznych w Polsce. Zeszyty Naukowe Uniwersytetu Jagiellońskiego, vol. 268, Prace Geograficzne, vol. 28.
12. Grings F.M., Ferrazzoli P., Jacobo-Berlles J.C., Karszenbaum H., Tiffenberg J., Pratolongo P., Kandus P., 2006. Monitoring flood conditions in marshes using EM models and Envisat ASAR observations. IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 4, pp. 936-942.
13. Grings F., Ferrazzoli P., Karszenbaum H., Tiffenberg J., Kandus P., Guerriero L., Jacobo-Berrles J.C., 2005. Modeling temporal evolution of junco marshes radar signatures. IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 10, pp. 2238-2245.
14. Hess L.L., Melack J.M., Filoso S., Wang Y., 1995. Delineation of inundated area and vegetation along the Amazon Floodplain with the SIR-C Synthetic Aperture Radar. IEEE Transactions on Geoscience and Remote Sensing, vol. 33, no. 4, pp. 896-904.
15. Hess L.L., Melack J.M., Simonet D.S., 1990. Radar detection of flooding beneath the forest canopy: A review. International Journal of Remote Sensing, vol. 11, no. 7, pp. 1313-1325.
16. Kasischke E.S., Smith K.B., Bourgeau-Chavez L.L., Romanowicz E.A., Brunzell S., Richardson C.J., 2003. Effects of seasonal hydrologic patterns in south Florida wetlands on radar backscatter measured from ERS-2 SAR imagery. Remote Sensing of Environment, vol. 88, no. 4, pp. 423-441.
17. Krohn D.M., Milton N.M., Segal D.B., 1983. SEASAT Synthetic Aperture Radar (SAR) response to lowland vegetation types in Eastern Maryland and Virginia. Journal of Geophysical Research, vol. 88, no. C3, pp. 1937-1952.
18. Le Toan T., Ribbes F., Wang L.-F., Floury N., Ding K.-H., Kong J.A., Fujita M., Kurosu T., 1997. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 1, pp. 41-56.
19. Li J., Chen W., 2005. A rule-based method for mapping Canada's wetlands using optical, radar and DEM data. International Journal of Remote Sensing, vol. 26, no. 22, pp. 5051-5069.
20. Marti-Cardona B., Lopez-Martinez C., Dolz-Ripolles J., Bladè-Castellet E., 2010. ASAR polarimetric, multi-incidence angle and multitemporal characterization of Do-ana wetlands for flood extent monitoring. Remote Sensing of Environment, vol. 114, no. 11, pp. 2802-2815.
21. Martinez J.-M., Le Toan T., 2007. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sensing of Environment, vol. 108, no. 3, pp. 209-223.
22. Moreau S., Le Toan T., 2003. Biomass quantification of Andean wetland forages using ERS satellite SAR data for optimizing livestock management. Remote Sensing of Environment, vol. 84, no. 4, pp. 477-492.
23. Pierdicca N., Pulvirenti L., Bignami C., 2010. Soil moisture estimation over vegetated terrains using multitemporal remote sensing data. Remote Sensing of Environment, vol. 114, no. 2, pp. 440-448.
24. Pope K.O., Rejmankova E., Paris J.F., Woodruff R., 1997. Detecting seasonal flooding cycles in marshes of the Yucatan Peninsula with SIR-C polarimetric radar imagery. Remote Sensing of Environment, vol. 59, no. 2, pp. 157-166.
25. Ramsey Iii E.W., 1995. Monitoring flooding in coastal wetlands by using radar imagery and ground-based measurements. International Journal of Remote Sensing, vol. 16, no. 13, pp. 2495-2502.
26. Rosenqvist Å., Forsberg B.R., Pimentel T., Rauste Y.A., Richey J.E., 2002. The use of spaceborne radar data to model inundation patterns and trace gas emissions in the central Amazon floodplain. International Journal of Remote Sensing, vol. 23, no. 7, pp. 1303-1328.
27. Slatton K.C., Crawford M.M., Chang L.-D., 2008. Modeling temporal variations in multipolarized radar scattering from intertidal coastal wetlands. Journal of Photogrammetry and Remote Sensing, vol. 63, no. 5, pp. 559-577.
28. Solovey T., 2013. Zastosowanie metod teledetekcyjnych do identyfikacji obszarów podmokłych na Nizinach Środkowopolskich. Biuletyn Państwowego Instytutu Geologicznego, vol. 454, pp. 133-139.
29. Townsend P.A., Walsh S.J., 1998. Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology, vol. 21, no. 3-4, pp. 295-312.
30. Tucker C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, vol. 8, no. 2, pp. 127-150.
31. ULABY F.T., LONG D.G., BLACKWELL W., ELACHI C., FUNG A., RUF C., SARABANDI K., ZEBKER H., VAN ZYL J., 2014. Microwave Radar and Radiometric Remote Sensing. Michigan: University of Michigan Press.
32. Ulaby F.T., Moore R.K., Fung A.K., 1986. Microwave Remote Sensing: Active and Passive. Vol. III. From Theory to Applications. Remote Sensing Series, vol. 4, MA: Artech House.
33. Wang Y., Hess L.L., Filoso S., Melack J.M., 1995. Understanding the radar backscattering from flooded and nonflooded Amazonian forests: Results from canopy backscatter modeling. Remote Sensing of Environment, vol. 54, no. 3, pp. 324-332.
34. Wickel A.J., Jackson T.J., Wood E.F., 2001. Multitemporal monitoring of soil moisture with RADARSAT SAR during the 1997 Southern Great Plains hydrology experiment. International Journal of Remote Sensing, vol. 22, no. 8, pp. 1571-1583.


Geographia Polonica





Start page:


End page:


Detailed Resource Type:



File size 3,6 MB ; application/pdf

Resource Identifier:

oai:rcin.org.pl:64079 ; 0016-7282 ; 10.7163/GPol.0109


CBGiOS. IGiPZ PAN, call nos.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link




Creative Commons Attribution BY-SA 3.0 PL license

Terms of use:

Copyright-protected material. [CC BY-SA 3.0 PL] May be used within the scope specified in Creative Commons Attribution BY-SA 3.0 PL license, full text available at: ; -

Digitizing institution:

Institute of Geography and Spatial Organization of the Polish Academy of Sciences

Original in:

Central Library of Geography and Environmental Protection. Institute of Geography and Spatial Organization PAS

Projects co-financed by:

European Union. European Regional Development Fund ; Programme Innovative Economy, 2010-2014, Priority Axis 2. R&D infrastructure






Citation style:

This page uses 'cookies'. More information